1
|
Yang L, Chen Z, Zhang Y, Lu F, Liu Y, Cao M, He N. Hyperproduction of extracellular polymeric substance in Pseudomonas fluorescens for efficient chromium (VI) absorption. BIORESOUR BIOPROCESS 2023; 10:17. [PMID: 38647825 PMCID: PMC10992911 DOI: 10.1186/s40643-023-00638-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/13/2023] [Indexed: 04/25/2024] Open
Abstract
A novel extracellular polymeric substance (EPS) with flocculating activity produced by Pseudomonas fluorescein isolated from soil was studied in this paper. Firstly, atmospheric and room temperature plasma (ARTP) was applied to get a mutant of P. fluorescein with higher EPS production. A mutant T4-2 exhibited a 106.48% increase in flocculating activity compared to the original strain. The maximum EPS yield from T4-2 was enhanced up to 6.42 g/L, nearly 10 times higher than the original strain on a 3.6-L bioreactor with optimized fermentation conditions. Moreover, the flocculating activity of the mutant reached 3023.4 U/mL, 10.96-fold higher than that of T4. Further identification showed that EPS from mutant T4-2 was mainly composed of polysaccharide (76.67%) and protein (15.8%) with a molecular weight of 1.17 × 105 Da. The EPS showed excellent adsorption capacities of 80.13 mg/g for chromium (VI), which was much higher than many reported adsorbents such as chitosan and cellulose. The adsorption results were described by Langmuir isotherm and pseudo-second-order kinetic model. The thermodynamic parameters (ΔG0, ΔH0 and ΔS0) revealed that the adsorption process was spontaneous and exothermic. Adsorption mechanisms were speculated to be electrostatic interaction, reduction, and chelation.
Collapse
Affiliation(s)
- Lijie Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Ying Zhang
- Shandong Institute of Commerce and Technology, Jinan, 251000, People's Republic of China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
2
|
Zhou J, Jia Y, Liu H. Coagulation/flocculation-flotation harvest of Microcystis aeruginosa by cationic hydroxyethyl cellulose and Agrobacterium mucopolysaccharides. CHEMOSPHERE 2023; 313:137503. [PMID: 36493887 DOI: 10.1016/j.chemosphere.2022.137503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/16/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Efficient biocoagulants/bioflocculants are desired for removal of Microcystis aeruginosa, the dominant harmful bloom-forming cyanobacterium. Herein, we reported cationic hydroxyethyl cellulose (CHEC) inactivated M. aeruginosa cells after forming coagulates and floating-flocculated them with aid of Agrobacterium mucopolysaccharides (AMP) and surfactant. CHEC exhibited cyanocidal activity at 20 mg/L, coagulating 85% of M. aeruginosa biomass within 9 h and decreasing 41% of chlorophyll a after 72 h. AMP acted as an adhesive flocculation aid that accelerated and strengthened the formation of flocs, approaching a maximum in 10 min. Flocs of M. aeruginosa were floated after foaming with cocoamidopropyl betaine (CAB), which facilitated the subsequent filter harvest. 82% of M. aeruginosa biomass was suspended on water surface after treated with the coagulation/flocculation-flotation (CFF) agents containing CHEC (25 mg/L), AMP (177 mg/L) and CAB (0.1 mg/L). All components in CFF agents at the applied concentrations did not inhibit acetylcholinesterase or Vibrio fischeri. Our findings provide new insights in developing bio-based materials for sustainable control of cyanobacterial blooms.
Collapse
Affiliation(s)
- Jinxia Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 610640, China.
| | - Yunlu Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 610640, China.
| |
Collapse
|
3
|
Ibrahim HAH, Abou Elhassayeb HE, El-Sayed WMM. Potential functions and applications of diverse microbial exopolysaccharides in marine environments. J Genet Eng Biotechnol 2022; 20:151. [PMID: 36318392 PMCID: PMC9626724 DOI: 10.1186/s43141-022-00432-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 10/08/2022] [Indexed: 01/25/2023]
Abstract
Exopolysaccharides (EPSs) from microorganisms are essential harmless natural biopolymers used in applications including medications, nutraceuticals and functional foods, cosmetics, and insecticides. Several microbes can synthesize and excrete EPSs with chemical properties and structures that make them suitable for several important applications. Microbes secrete EPSs outside their cell walls, as slime or as a "jelly" into the extracellular medium. These EPS-producing microbes are ubiquitous and can be isolated from aquatic and terrestrial environments, such as freshwater, marine water, wastewater, and soils. They have also been isolated from extreme niches like hot springs, cold waters, halophilic environments, and salt marshes. Recently, microbial EPSs have attracted interest for their applications such as environmental bio-flocculants because they are degradable and nontoxic. However, further efforts are required for the cost-effective and industrial-scale commercial production of microbial EPSs. This review focuses on the exopolysaccharides obtained from several extremophilic microorganisms, their synthesis, and manufacturing optimization for better cost and productivity. We also explored their role and applications in interactions between several organisms.
Collapse
Affiliation(s)
- Hassan A. H. Ibrahim
- Marine Microbiology Department, National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516 Egypt
| | - Hala E. Abou Elhassayeb
- Marine Microbiology Department, National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516 Egypt
| | - Waleed M. M. El-Sayed
- Marine Microbiology Department, National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516 Egypt
| |
Collapse
|
4
|
Szewczuk-Karpisz K, Wiśniewska M, Medykowska M, Galaburda MV, Bogatyrov VM, Oranska OI, Błachnio M, Oleszczuk P. Simultaneous adsorption of Cu(II) ions and poly(acrylic acid) on the hybrid carbon-mineral nanocomposites with metallic elements. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125138. [PMID: 33556860 DOI: 10.1016/j.jhazmat.2021.125138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/19/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
In order to propose a novel, effective adsorbent of Cu(II) ions, hybrid carbon-mineral nanocomposites with metallic elements (Mn/Fe in the case of B-6, Mn - B-8) were examined. A combination of mechanochemical and pyrolytic methods was used to obtain these bimodal micro-mesopore systems. First, mechanochemical mixing of phenol-formaldehyde resin and inorganic compounds in a ball mill was carried out. Then, the pyrolysis of the mixture under inert atmosphere at 800 °C was performed. The obtained composites were characterized using nitrogen adsorption/desorption, Fourier transform infrared spectroscopy, electron microscopes as well as X-ray diffraction, X-ray fluorescence and X-ray photoelectron spectroscopy. Adsorption, electrokinetic and aggregation studies were also performed, in the absence and presence of poly(acrylic acid) (PAA) - a macromolecular compound commonly used in industry and agriculture, which may be present in wastewater together with copper(II) ions. Under examined conditions (at pH 5 and 6), Cu(II) adsorbed amount was higher on the B-8 surface than on the B-6 one. At pH 6 for the initial Cu(II) concentration 100 ppm, 51.74% of the ions was adsorbed on B-8% and 46.68% - on B-6. Heavy metal adsorption contributes to stronger aggregation of nanocomposite particles. Thus, the presented bimodal solids, especially that containing Mn (called B-8), can be considered as adsorbents in heavy metal removal from aqueous solutions.
Collapse
Affiliation(s)
| | - Małgorzata Wiśniewska
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie, Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Magdalena Medykowska
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie, Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Mariia V Galaburda
- Chuiko Institute of Surface Chemistry National Academy of Sciences of Ukraine, General Naumov Street 17, 03164 Kyiv, Ukraine
| | - Viktor M Bogatyrov
- Chuiko Institute of Surface Chemistry National Academy of Sciences of Ukraine, General Naumov Street 17, 03164 Kyiv, Ukraine
| | - Olena I Oranska
- Chuiko Institute of Surface Chemistry National Academy of Sciences of Ukraine, General Naumov Street 17, 03164 Kyiv, Ukraine
| | - Magdalena Błachnio
- Department of Physicochemistry of Solid Surface, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie, Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie, Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland.
| |
Collapse
|
5
|
Szewczuk-Karpisz K, Nowicki P, Sokołowska Z, Pietrzak R. Hay-based activated biochars obtained using two different heating methods as effective low-cost sorbents: Solid surface characteristics, adsorptive properties and aggregation in the mixed Cu(II)/PAM system. CHEMOSPHERE 2020; 250:126312. [PMID: 32120152 DOI: 10.1016/j.chemosphere.2020.126312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
The main aim of the study was to compare the sorption capacity of hay-based activated biochars, obtained using conventional and microwave furnance, relative to copper(II) ions and ionic polyacrylamides (PAM). Surface properties of the solids were characterized by, inter alia, N2 adsorption/desorption isotherm method, whereas their tendency to aggregation was established turbidimetrically. Adsorption capacity of biochars were performed in the simple and mixed Cu(II)/PAM systems, i.e. the examined suspensions contained one or two adsorbates at the same time. The results indicated that biochar prepared in microwave furnance was characterized by larger micropore area and, as a result, it had higher adsorption capacity relative to Cu(II) ions. At pH 6, when the initial Cu(II) concentration equaled 100 mg/L, the biochar obtained by microwave heating adsorbed 81.5% of Cu(II) ions, whereas the one obtained by conventional heating - 51.6%. Due to high molecular weight, the PAM macromolecules could not penetrate the biochar micropores and thus the polymer adsorbed amounts were similar for both materials. For initial polymer concentration equal to 100 mg/L, the solids adsorbed 65-66.2% of cationic PAM containing 25% of quaternary amine groups. In the mixed system of anionic polyacrylamide and Cu(II) ions, the formation of Cu(II)-PAM complexes occurred, which favored both heavy metal and polymer adsorption on the solid surface. On the other hand, cationic polyacrylamide and heavy metal ions made the contact with the solid difficult for each other. What is more, ionic polyacrylamide and copper(II) ions stimulated the biochar aggregation due to surface charge neutralization and flocculation.
Collapse
Affiliation(s)
| | - Piotr Nowicki
- Laboratory of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Zofia Sokołowska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Robert Pietrzak
- Laboratory of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
6
|
Szewczuk-Karpisz K, Wiśniewska M, Medykowska M, Bogatyrov VM, Sokołowska Z. Adsorption layer structure on the surface of carbon-silica composite in the presence of proteins of different internal stability and Cu(II) ions – The effect on solid aggregation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Kosmulski M. The pH dependent surface charging and points of zero charge. VIII. Update. Adv Colloid Interface Sci 2020; 275:102064. [PMID: 31757389 DOI: 10.1016/j.cis.2019.102064] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/28/2022]
Abstract
A critical review of the points of zero charge (PZC) obtained by potentiometric titration and of isoelectric points (IEP) obtained by electrokinetic measurements. The results from the recent literature are presented with experimental details (temperature, method, type of apparatus, etc.), and they are compared with the zero points of similar materials reported in older publications. Most studies of PZC and IEP reported in the recent papers were carried out for metal oxides and hydroxides, especially alumina, iron oxides, and titania, and the results are consistent with the PZC and IEP of similar materials reported in older literature, and summarized in previous reviews by the same author. Relatively few studies were carried out with less common materials, and IEP of (nominally) VO2 and BN have been reported for the 1st time.
Collapse
|
8
|
Adsorption layer structure at soil mineral/biopolymer/supporting electrolyte interface – The impact on solid aggregation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|