1
|
Van Nguyen H, Tung Pham S, Vu TN, Van Nguyen H, La DD. Effective treatment of 2,4,6-trinitrotoluene from aqueous media using a sono-photo-Fenton-like process with a zero-valent iron nanoparticle (nZVI) catalyst. RSC Adv 2024; 14:23720-23729. [PMID: 39077310 PMCID: PMC11284922 DOI: 10.1039/d4ra03907f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
In this study, we examine the effectiveness of using a combination of a sono-photo-Fenton-like procedure and nano zero-valent iron catalyst (nZVI) to treat 2,4,6-trinitrotoluene (TNT) in an aquatic environment. Zero-valent iron particles were generated by a chemical reduction technique. nZVI nanoparticles were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) to characterize the nanocatalyst. The resulting nZVI nanoparticles were used as an addition in a sono-photo-Fenton method to remediate an aqueous solution contaminated with TNT. Furthermore, influences of operational factors such as temperature, catalyst dosage, wavelength, ultraviolet power, ultrasonic frequency and power, pH level, H2O2/nZVI ratio, initial TNT concentration, and reaction duration on the treatment of TNT were investigated. Under the conditions of an ideal pH of 3, temperature range of 40-45 °C, concentration of 50 mg per L TNT, dose of 2 mM of nZVI, and ratio of H2O2/Fe0 of 20, a treatment efficiency of 95.2% was achieved after a duration of 30 minutes. The sono-photo-Fenton process combined with nZVI showed a higher TNT removal efficiency compared to the Fenton, sono-Fenton, and photo-Fenton processes under the same conditions. Moreover, it promises a potential solution to treat TNT at the pilot scale while allowing reuse of the nZVI catalyst and the limitation of sludge.
Collapse
Affiliation(s)
| | | | | | | | - Duong Duc La
- Institute of Chemistry and Materials Hanoi Vietnam
| |
Collapse
|
2
|
He M, Li D, Liu Y, Li T, Li F, Fernández-Catalá J, Cao W. One-pot hydrothermal synthesis of FeNbO 4 microspheres for effective sonocatalysis. NEW J CHEM 2024; 48:6704-6713. [PMID: 38628578 PMCID: PMC11018166 DOI: 10.1039/d3nj05239g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/10/2024] [Indexed: 04/19/2024]
Abstract
FeNbO4 sonocatalysts were successfully synthesized by a simple hydrothermal route at pH values of 3, 5, 7, 9 and 11. The catalysts were characterized by XRD, XPS, TEM, SEM, N2 adsorption and DRS to analyse the effect of pH parameters on the physicochemical properties of the materials during hydrothermal synthesis. The sonocatalytic activity of FeNbO4 microspheres was evaluated by using acid orange 7 (AO7) as the simulated contaminant. The experimental results showed that the best sonocatalytic degradation ratio (97.45%) of organic dyes could be obtained under the conditions of an initial AO7 concentration of 10 mg L-1, an ultrasonic power of 200 W, a catalyst dosage of 1.0 g L-1, and a pH of 3. Moreover, the sonocatalysts demonstrated consistent durability and stability across multiple test cycles. After active species capture experiments and calculation of the energy band, a possible mechanism was proposed based on the special Fenton-like mechanism and the dissociation of H2O2. This research shows that FeNbO4 microspheres can be used as sonocatalysts for the purification of organic wastewater, which has a promising application prospect.
Collapse
Affiliation(s)
- Min He
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University China
| | - Defa Li
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University China
| | - Yu Liu
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University China
| | - Taohai Li
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University China
- Nano and Molecular Systems Research Unit, University of Oulu P.O. Box 3000 FIN-90014 Finland
| | - Feng Li
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University China
- Nano and Molecular Systems Research Unit, University of Oulu P.O. Box 3000 FIN-90014 Finland
| | - Javier Fernández-Catalá
- Nano and Molecular Systems Research Unit, University of Oulu P.O. Box 3000 FIN-90014 Finland
- Inorganic Chemistry Department, Materials Science Institute, University of Alicante Ap. 99 Alicante 03080 Spain
| | - Wei Cao
- Nano and Molecular Systems Research Unit, University of Oulu P.O. Box 3000 FIN-90014 Finland
| |
Collapse
|
3
|
Moradi S, Rodriguez-Seco C, Hayati F, Ma D. Sonophotocatalysis with Photoactive Nanomaterials for Wastewater Treatment and Bacteria Disinfection. ACS NANOSCIENCE AU 2023; 3:103-129. [PMID: 37096232 PMCID: PMC10119989 DOI: 10.1021/acsnanoscienceau.2c00058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 04/26/2023]
Abstract
Sonophotocatalysis is described as a combination of two individual processes of photocatalysis and sonocatalysis. It has proven to be highly promising in degrading dissolved contaminants in wastewaters as well as bacteria disinfection applications. It eliminates some of the main disadvantages observed in each individual technique such as high costs, sluggish activity, and prolonged reaction times. The review has accomplished a critical analysis of sonophotocatalytic reaction mechanisms and the effect of the nanostructured catalyst and process modification techniques on the sonophotocatalytic performance. The synergistic effect between the mentioned processes, reactor design, and the electrical energy consumption has been discussed due to their importance when implementing this novel technology in practical applications, such as real industrial or municipal wastewater treatment plants. The utilization of sonophotocatalysis in disinfection and inactivation of bacteria has also been reviewed. In addition, we further suggest improvements to promote this technology from the lab-scale to large-scale applications. We hope this up-to-date review will advance future research in this field and push this technology toward widespread adoption and commercialization.
Collapse
Affiliation(s)
- Sina Moradi
- Institut
National de la Recherche Scientifique (INRS)-Centre Énergie
Materiaux et Telécommunications, 1650 Boulevard Lionel-Boulet, VarennesJ3X 1P7, Québec, Canada
| | - Cristina Rodriguez-Seco
- Institut
National de la Recherche Scientifique (INRS)-Centre Énergie
Materiaux et Telécommunications, 1650 Boulevard Lionel-Boulet, VarennesJ3X 1P7, Québec, Canada
| | - Farzan Hayati
- Department
of Chemical and Biological Engineering, University of Saskatchewan, SaskatoonS7N 5A9, SK, Canada
| | - Dongling Ma
- Institut
National de la Recherche Scientifique (INRS)-Centre Énergie
Materiaux et Telécommunications, 1650 Boulevard Lionel-Boulet, VarennesJ3X 1P7, Québec, Canada
| |
Collapse
|
4
|
Xu J, Yan C, Wu Z, Xu M, Wei T, He T, Zhou W, Zhang Y, Zhang J, Yang B. Synergistic reduction and oxidation system using 4,7-dihydroxycoumarin as a green photocatalyst for efficient nitrobenzene degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Hu W, Wu F, Liu W. Facile synthesis of Z-scheme Bi2O3/Bi2WO6 composite for highly effective visible-light-driven photocatalytic degradation of nitrobenzene. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Ryu B, Wong KT, Choong CE, Kim JR, Kim H, Kim SH, Jeon BH, Yoon Y, Snyder SA, Jang M. Degradation synergism between sonolysis and photocatalysis for organic pollutants with different hydrophobicity: A perspective of mechanism and application for high mineralization efficiency. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125787. [PMID: 33862480 DOI: 10.1016/j.jhazmat.2021.125787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Despite extensive studies, the fundamental understanding of synergistic mechanisms between sonolysis and photocatalysis for the abatement of persistent organic pollutants (POPs) remains uncertain. As different phases formed under ultrasound irradiation, hydrophilic POPs, sulfamethoxazole (SMX, Kow: 0.89), predominantly resides in bulk liquid and is ineffectively degraded by sonolysis (kUS = 3.33 × 10-3 min-1) since <10% of hydroxyl radicals (·OH) formed at the gas-liquid interface of cavitation is diffused into the bulk, whereas the other fraction rapidly recombines into hydrogen peroxide (H2O2). This study provides a proof-of-concept for the mechanism by presenting various analytical results, endorsing the synergistic role of photoexcited electrons in splitting sonolysis-induced H2O2 into ·OH, particularly in the bulk phase. In a sonophotocatalytic system, the hydrophobic POPs such as bisphenol A (BPA) and atrazine (ATZ) were mainly degraded in gas-liquid interface indicated by the low synergistic values correlation compared to SMX [i.e., SMX has a higher synergistic factor, fsyn (3.26) than BPA (1.30) and ATZ (1.35)]. Also, fsyn was found linearly correlated with the contribution factor of photocatalysis to split H2O2. Three times of consecutive kinetics using an effluent of municipal (MP) wastewater spiked by POPs presented >98% POPs and >96% total organic carbon (TOC) removal.
Collapse
Affiliation(s)
- Baekha Ryu
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Kien Tiek Wong
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| | - Choe Earn Choong
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jung-Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyunook Kim
- Department of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Sang-Hyoun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA
| | - Shane A Snyder
- Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA; Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| |
Collapse
|
7
|
Bilal M, Bagheri AR, Bhatt P, Chen S. Environmental occurrence, toxicity concerns, and remediation of recalcitrant nitroaromatic compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112685. [PMID: 33930637 DOI: 10.1016/j.jenvman.2021.112685] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Nitroaromatic compounds (NACs) are considered important groups of chemicals mainly produced by human and industrial activities. The large-scale application of these xenobiotics creates contamination of the water and soil environment. Despite applicability, NACs have been caused severe hazardous side effects in animals and human systems like different cancers, anemia, skin irritation, liver damage and mutagenic effects. The effective remediation of the NACs from the environment is a significant concern. Researchers have implemented physicochemical and biological methods for the remediation of NACs from the environment. Most of the applied methods are based on adsorption and degradation approaches. Among these methods, degradation is considered a versatile method for the subsequent removal of NACs due to its exceptional properties like simplicity, easy operation, cost-effectiveness, and availability. Most importantly, the degradation process does not generate hazardous side products and wastes compared to other methods. Hence, the importance of NACs, their remediation, and supreme attributes of the degradation method have encouraged us to review the recent progress and development for the removal of these perilous materials using degradation as a versatile method. Therefore, in this review, (i) NACs, physicochemical properties, and their hazardous side effects on humans and animals are discussed; (ii) Physicochemical methods, microbial, anaerobic bioremediation, mycoremediation, and aerobic degradation approaches for the degradation of NACs were thoroughly vetted; (iii) The possible mechanisms for degradation of NACs were investigated and discussed. (iv) The applied kinetic models for evaluation of the rate of degradation were also assessed and discussed. Finally, (vi) current challenges and future prospects of proposed methods for degradation and removal of NACs were also directed.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | | | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Wang H, Zhang L, Tian Y, Jia Y, Bo G, Luo L, Liu L, Shi G, Li F. Performance of nitrobenzene and its intermediate aniline removal by constructed wetlands coupled with the micro-electric field. CHEMOSPHERE 2021; 264:128456. [PMID: 33039917 DOI: 10.1016/j.chemosphere.2020.128456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The degradation of nitrobenzene and its intermediate aniline from wastewater by constructed wetlands coupled with the micro-electric field (CW-MEF) technology was studied. The results showed that the CW-MEF system had good degradation. With the increase of influent concentration of nitrobenzene, the removal rate of the anode was excellent which remained above 86%, but the degradation of CW-MEF for COD decreased. In different stages, the power generation capacity was different. In the second stage, the power generation voltage reached 430 V and the average power density was 85.07 MW m-3, while the maximum reached 87.47 MW m-3. Through high-throughput sequencing analysis, the A1 sludge layer contained 36% of thick-walled bacteria and 20% of bacteroides, the A2 contained about 20% of campylobacter green, and the A3 contained 10% of green campylobacter, pachyphyte and bacteroides.
Collapse
Affiliation(s)
- Hao Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, China.
| | - Lei Zhang
- School of Geology and Environment, Xi'an University of Science and Technology, Xi'an, China.
| | - Yang Tian
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, China.
| | - Yang Jia
- School of Geology and Environment, Xi'an University of Science and Technology, Xi'an, China.
| | - Guozhu Bo
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, China.
| | - Litao Luo
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, China.
| | - Lin Liu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, China.
| | - Guoyuan Shi
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, China.
| | - Fuping Li
- College of Mining Engineering, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
9
|
Radoń A, Łukowiec D, Włodarczyk P. Broadband dielectric spectroscopy for monitoring temperature-dependent chloride ion motion in BiOCl plates. Sci Rep 2020; 10:22094. [PMID: 33328552 PMCID: PMC7744526 DOI: 10.1038/s41598-020-79018-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022] Open
Abstract
The dielectric properties and electrical conduction mechanism of bismuth oxychloride (BiOCl) plates synthesized using chloramine-T as the chloride ion source were investigated. Thermally-activated structure rebuilding was monitored using broadband dielectric spectroscopy, which showed that the onset temperature of this process was 283 K. This rebuilding was related to the introduction of free chloride ions into [Bi2O2]2+ layers and their growth, which increased the intensity of the (101) diffraction peak. The electrical conductivity and dielectric permittivity were related to the movement of chloride ions between plates (in the low-frequency region), the interplanar motion of Cl- ions at higher frequencies, vibrations of these ions, and charge carrier hopping at frequencies above 10 kHz. The influence of the free chloride ion concentration on the electrical conductivity was also described. Structure rebuilding was associated with a lower concentration of free chloride ions, which significantly decreased the conductivity. According to the analysis, the BiOCl plate conductivity was related to the movement of Cl- ions, not electrons.
Collapse
Affiliation(s)
- Adrian Radoń
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St., 44-100, Gliwice, Poland.
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100, Gliwice, Poland.
| | - Dariusz Łukowiec
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100, Gliwice, Poland
| | - Patryk Włodarczyk
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St., 44-100, Gliwice, Poland
| |
Collapse
|
10
|
Sabri M, Habibi-Yangjeh A, Chand H, Krishnan V. Activation of persulfate by novel TiO2/FeOCl photocatalyst under visible light: Facile synthesis and high photocatalytic performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117268] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Synthesis and Characterization of Zinc Peroxide Nanoparticles for the Photodegradation of Nitrobenzene Assisted by UV-Light. Catalysts 2020. [DOI: 10.3390/catal10091041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The contamination of both soil and water by nitrobenzene (NB) is a problem that has been studied, where several reactive agents have been developed for the degradation of this compound as well as different methods. Nanoparticles with semiconductive properties have been studied for organic compounds photodegradation due to their assistance in optimizing the degradation processes. Two of the most promising photocatalysts are ZnO and TiO2 because of their optimal results. In the present work the performance of the zinc peroxide (ZnO2) nanoparticles was evaluated. ZnO2 nanoparticles were synthesized from zinc acetate and hydrogen peroxide using the Sol-Gel method under ultrasound assistance. The characterization was carried out by UV–Vis spectroscopy, infrared Fourier transform total reflectance (ATR-FT-IR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), Zeta potential, dynamic light scattering (DLS), field emission scanning electron microscopy (FE-SEM), and Energy Dispersive X-ray spectroscopy (EDX). The experiments for the degradation of NB were carried out in a photoreactor with UV lamps of 254 nm at 25 °C, using a solution of nitrobenzene with the nanoparticles. The best conditions for NB photodegradation were 30 ppm (ZnO2) and 15 ppm (NB) at pH 2, reaching up to 90% degradation in 2 h. The intermediates formed during the photodegradation of NB were identified by gas chromatography mass spectrometry.
Collapse
|
12
|
Hu J, Li Y, Nan S, Yoza BA, Li Y, Zhan Y, Wang Q, Li QX, Guo S, Chen C. Catalytic Ozonation of Nitrobenzene by Manganese-Based Y Zeolites. Front Chem 2020; 8:80. [PMID: 32117897 PMCID: PMC7028746 DOI: 10.3389/fchem.2020.00080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/24/2020] [Indexed: 11/21/2022] Open
Abstract
Catalytic ozonation process (COP) is considered as a cost-efficient technology for the treatment of refractory chemical wastewaters. The catalyst performance plays an important role for the treatment efficiency. The present study investigated efficiencies and mechanisms of manganese (Mn)-based Y zeolites in COPs for removing nitrobenzene from water. The catalysts of Mn/NaY and Mn/USY were prepared by incipient wetness impregnation, while Mn-USY was obtained by hydrothermal synthesis. Mn-USY contained a greater ratio of Mn2+ than Mn/NaY, and Mn/USY. Mn oxides loaded on Y zeolites promoted the COP efficiencies. Mn/NaY increased total organic carbon removal in COP by 7.3% compared to NaY, while Mn/USY and Mn-USY increased 11.5 and 15.8%, respectively, relative to USY in COP. Multivalent Mn oxides (Mn2+, Mn3+, and Mn4+) were highly dispersed on the surface of NaY or USY, and function as catalytic active sites, increasing mineralization. Mn-USY showed the highest total organic carbon removal (44.3%) in COP among the three catalysts, because Mn-USY had a higher ratio of Mn2+ to the total Mn oxides on the surface than Mn/NaY and Mn/USY and the catalytic effects from intercorrelations between Mn oxides and mesoporous surface structures. The hydroxyl radicals and superoxide radicals governed oxidations in COP using Mn-USY. Nitrobenzene was oxidized to polyhydroxy phenol, polyhydroxy nitrophenol, and p-benzoquinone. The intermediates were then oxidized to small organic acids and ultimately carbon dioxide and water. This study demonstrates the potential of Y zeolites used in COP for the treatment of refractory chemical wastewaters.
Collapse
Affiliation(s)
- Jingze Hu
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, China
| | - Yiming Li
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, China
| | - Shaoshuai Nan
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, China
| | - Brandon A Yoza
- Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Yifan Li
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, China
| | - Yali Zhan
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, China
| | - Qinghong Wang
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Shaohui Guo
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, China
| | - Chunmao Chen
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, China
| |
Collapse
|
13
|
Synthesis and characterization of magnetite nanoparticles for photocatalysis of nitrobenzene. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2019.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Eshaq G, Wang S, Sun H, Sillanpaa M. Superior performance of FeVO 4@CeO 2 uniform core-shell nanostructures in heterogeneous Fenton-sonophotocatalytic degradation of 4-nitrophenol. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121059. [PMID: 31470302 DOI: 10.1016/j.jhazmat.2019.121059] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Porous FeVO4 nanorods decorated on CeO2 nanocubes (FeVO4@CeO2) were successfully prepared via a facile hydrothermal route and tested in the degradation of 4-nitrophenol (4-NP) for enhanced heterogeneous oxidation using ultrasonic (US), ultraviolet (UV), and binary irradiation US/UV, respectively. The nanostructure of the core-shell FeVO4@CeO2 was characterised using XRD, SEM, EDS elemental mapping, TEM, HRTEM, SAED, FTIR, Raman, BET, point of zero charge (PZC), XPS analysis and UV-vis DRS. The effect of various parameters, for examples, nanostructured core-shell amounts, hydrogen peroxide concentration, initial concentration, pH and irradiation time, on 4-NP degradation were investigated for the optimisation of the catalytic performance. The durability and stability of the core-shell nanostructured materials were also investigated and the obtained results revealed that the catalysts can endure the harsh sonophotocatalytic conditions even after six cycles. Mineralisation experiments were investigated using the optimised parameters. The core-shell nanostructured FeVO4@CeO2 has higher PZC than pure FeVO4 and CeO2, leading to excellent sonophotocatalytic activity even at high pH and stability for the degradation of 4-NP after six cycles. A possible mechanism over the FeVO4@CeO2 was proposed based on the special three-way Fenton-like mechanism and the dissociation of H2O2 with the experiments of active species trapping and calculated band gap energy.
Collapse
Affiliation(s)
- Gh Eshaq
- Department of Green Chemistry (DGC), School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130, Mikkeli, Finland; Petrochemicals department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, Perth, WA 6027, Australia
| | - Mika Sillanpaa
- Department of Green Chemistry (DGC), School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130, Mikkeli, Finland
| |
Collapse
|
15
|
Eshaq G, Wang S, Sun H, Sillanpää M. Core/shell FeVO4@BiOCl heterojunction as a durable heterogeneous Fenton catalyst for the efficient sonophotocatalytic degradation of p-nitrophenol. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115915] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Madhavan J, Theerthagiri J, Balaji D, Sunitha S, Choi MY, Ashokkumar M. Hybrid Advanced Oxidation Processes Involving Ultrasound: An Overview. Molecules 2019; 24:molecules24183341. [PMID: 31540329 PMCID: PMC6767267 DOI: 10.3390/molecules24183341] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/07/2022] Open
Abstract
Sonochemical oxidation of organic pollutants in an aqueous environment is considered to be a green process. This mode of degradation of organic pollutants in an aqueous environment is considered to render reputable outcomes in terms of minimal chemical utilization and no need of extreme physical conditions. Indiscriminate discharge of toxic organic pollutants in an aqueous environment by anthropogenic activities has posed major health implications for both human and aquatic lives. Hence, numerous research endeavours are in progress to improve the efficiency of degradation and mineralization of organic contaminants. Being an extensively used advanced oxidation process, ultrasonic irradiation can be utilized for complete mineralization of persistent organic pollutants by coupling/integrating it with homogeneous and heterogeneous photocatalytic processes. In this regard, scientists have reported on sonophotocatalysis as an effective strategy towards the degradation of many toxic environmental pollutants. The combined effect of sonolysis and photocatalysis has been proved to enhance the production of high reactive-free radicals in aqueous medium which aid in the complete mineralization of organic pollutants. In this manuscript, we provide an overview on the ultrasound-based hybrid technologies for the degradation of organic pollutants in an aqueous environment.
Collapse
Affiliation(s)
- Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore 632115, Tamilnadu, India;
- Correspondence: (J.M.); (M.A.)
| | - Jayaraman Theerthagiri
- Centre of Excellence for Energy Research, Sathyabama Institute of Science and Technology, Deemed to be University, Chennai 600119, India;
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Dhandapani Balaji
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore 632115, Tamilnadu, India;
| | - Salla Sunitha
- Department of Chemistry, Sathyabama Institute of Science and Technology, Deemed to be University, Chennai 600119, India;
| | - Myong Yong Choi
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Muthupandian Ashokkumar
- School of Chemistry, University of Melbourne, Parkville campus, Melbourne, VIC 3010, Australia
- Correspondence: (J.M.); (M.A.)
| |
Collapse
|
17
|
Eshaq G, ElMetwally AE. Bmim[OAc]-Cu 2O/g-C 3N 4 as a multi-function catalyst for sonophotocatalytic degradation of methylene blue. ULTRASONICS SONOCHEMISTRY 2019; 53:99-109. [PMID: 30655122 DOI: 10.1016/j.ultsonch.2018.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 05/07/2023]
Abstract
In this study, ionic liquid, 1-butyl-3-methylimidazolium acetate (Bmim[OAc]) modified cuprous oxide immobilized over graphitic carbon nitride (Bmim[OAc]-Cu2O/g-C3N4) as an efficient heterogeneous catalyst was successfully prepared by depositing Bmim[OAc]-Cu2O over the surface of g-C3N4. The deposition of cuprous oxide over the surface of g-C3N4 leads to the formation of a heterojunction that promotes the charge separation. Cu2O enhances the degradation capability owing to its dual function where it acts as a photocatalyst and Fenton like catalyst. Bmim[OAc] plays a vital role in trapping the photogenerated electrons, which in turn reduce the chances of electron-hole pairs recombination. Sonophotocatalytic degradation of methylene blue (MB) was investigated using the prepared Bmim[OAc]-Cu2O/g-C3N4 at room temperature and pH = 7 in presence of ultraviolet (UV, 6 W, λ = 254 nm) and ultrasonic (US, 20 kHz) as a dual irradiation system and H2O2 as an oxidant. Only 30 min of dual irradiation was enough for Bmim[OAc]-Cu2O/g-C3N4 (0.1 gL-1) to achieve a complete degradation using 10 mM H2O2 at 25 °C and pH = 7. The value of band gap of tested catalyst plays a vital role in boosting the degradation capability of the sonophotocatalytic system through the generated reactive radicals especially the hydroxyl radicals and superoxide radicals, which play a major role in the system. The kinetics of the reaction was investigated and the activation energy was calculated from the slope of the Arrhenius plot and found to be 19.77 kJ/mol.
Collapse
Affiliation(s)
- Ghada Eshaq
- Petrochemicals Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Ahmed E ElMetwally
- Petrochemicals Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt.
| |
Collapse
|
18
|
ElMetwally AE, Eshaq G, Yehia FZ, Al-Sabagh AM, Kegnæs S. Iron Oxychloride as an Efficient Catalyst for Selective Hydroxylation of Benzene to Phenol. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03590] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ahmed E. ElMetwally
- Petrochemicals department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Ghada Eshaq
- Petrochemicals department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Fatma Z. Yehia
- Petrochemicals department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Ahmed M. Al-Sabagh
- Petroleum applications department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Søren Kegnæs
- DTU Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|