1
|
Cui B, Rong H, Tian T, Guo D, Duan L, Nkinahamira F, Ndagijimana P, Yan W, Naidu R. Chemical methods to remove microplastics from wastewater: A review. ENVIRONMENTAL RESEARCH 2024; 249:118416. [PMID: 38316391 DOI: 10.1016/j.envres.2024.118416] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/23/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Microplastics (Mps) have emerged as a pervasive environmental concern, with their presence detected not only in freshwater ecosystems but also in drinking and bottled water sources. While extensive research has centered on understanding the origins, migration patterns, detection techniques, and ecotoxicological impacts of these contaminants, there remains a notable research gap about the strategies for Mps removal. This study reviews existing literature on chemical approaches for mitigating microplastic contamination within wastewater systems, focusing on coagulation precipitation, electrocoagulation, and advanced oxidation methods. Each approach is systematically explored, encompassing their respective mechanisms and operational dynamics. Furthermore, the comparative analysis of these three techniques elucidates their strengths and limitations in the context of MPs removal. By shedding light on the intricate mechanisms underlying these removal methods, this review contributes to the theoretical foundation of microplastic elimination from wastewater and identifies future research trajectories and potential challenges.
Collapse
Affiliation(s)
- Baihui Cui
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road, Guangming District, Guangdong, 518107, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tingting Tian
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dabin Guo
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), College of Science, Engineering and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (crcCARE), University Drive, Callaghan, NSW, 2308, Australia
| | | | | | - Wangwang Yan
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road, Guangming District, Guangdong, 518107, China.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Science, Engineering and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (crcCARE), University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
2
|
Dong Y, Hua Z, Zeng Y, Yue T, Tang H, Sun W. High efficiency regulating sedimentation and rheological properties of copper tailings using polycarboxylate superplasticizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168637. [PMID: 37984662 DOI: 10.1016/j.scitotenv.2023.168637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
The recovery of low grade and fine particle copper ore usually requires sufficient dissociation, which reduces the particle size to the submicron level, presenting new challenges in subsequent copper tailings disposal. Flocculants can improve tailings sedimentation efficiency, but they also change the rheological properties of the slurry, resulting in low efficiency and high energy consumption during long-distances pumping. To address this issue, this study introduced polycarboxylate ether (PCE) superplasticizers as auxiliary additives for tailings treatment to improve fine particles sedimentation efficiency while enhancing slurry flowability. The results showed that compared to non-ionic polyacrylamide (NPAM) treated slurries, the synergistic effects of PCE and NPAM increased the initial sedimentation rate (ISR) by up to 3.4 times while decreasing the yield stress by up to 8 times and the thixotropic loop area by 10.5 times. DLVO theory calculations showed that PCE mainly affects particle interactions through a significant decrease in electrostatic repulsion. By in-situ monitoring with a focused beam reflectance measurement (FBRM) device, it was demonstrated that the synergistic effect of PCE improved the flocculation ability, strength, and regrowth ability of flocs. Furthermore, strong correlations were found between floc properties and fluid rheological properties. Overall, this study indicated that PCE additive was a promising reagent for fine particles slurry rapid settling and flowability enhancement, providing a new approach for copper tailings disposal.
Collapse
Affiliation(s)
- Yingdi Dong
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Engineering Research Center of Carbon Emission Reduction in Development and Utilization of Metal Resources, Ministry of Education, Central South University, Changsha 410083, China
| | - Zhongbao Hua
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Engineering Research Center of Carbon Emission Reduction in Development and Utilization of Metal Resources, Ministry of Education, Central South University, Changsha 410083, China
| | - Yong Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Engineering Research Center of Carbon Emission Reduction in Development and Utilization of Metal Resources, Ministry of Education, Central South University, Changsha 410083, China
| | - Tong Yue
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Engineering Research Center of Carbon Emission Reduction in Development and Utilization of Metal Resources, Ministry of Education, Central South University, Changsha 410083, China
| | - Honghu Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Engineering Research Center of Carbon Emission Reduction in Development and Utilization of Metal Resources, Ministry of Education, Central South University, Changsha 410083, China.
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Engineering Research Center of Carbon Emission Reduction in Development and Utilization of Metal Resources, Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Diaz-Baca JA, Salaghi A, Fatehi P. Generation of Sulfonated Lignin-Starch Polymer and Its Use As a Flocculant. Biomacromolecules 2023; 24:1400-1416. [PMID: 36802502 DOI: 10.1021/acs.biomac.2c01437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
This paper reports the polymerization of tall oil lignin (TOL), starch, and 2-methyl-2-propene-1-sulfonic acid sodium salt (MPSA), a sulfonate-containing monomer, in a three-component system to generate flocculants for colloidal systems. By utilizing the advanced 1H, COSY, HSQC, HSQC-TOCSY, and HMBC NMR techniques, it was confirmed that the phenolic substructures of TOL and the anhydroglucose unit of starch were covalently polymerized by the monomer to generate the three-block copolymer. The molecular weight, radius of gyration, and shape factor of the copolymers were fundamentally correlated to the structure of lignin and starch, as well as the polymerization outcomes. The deposition behavior of the copolymer, studied by a quartz crystal microbalance with dissipation (QCM-D) analysis, revealed that the copolymer with a larger molecular weight (ALS-5) deposited more and generated more compact adlayer than the copolymer with a smaller molecular weight on a solid surface. Owing to its higher charge density, molecular weight, and extended coil-like structure, ALS-5 produced larger flocs with faster sedimentation in the colloidal systems, regardless of the extent of agitation and gravitational force. The results of this work provide a new approach to preparing a lignin-starch polymer, i.e., a sustainable biomacromolecule with excellent flocculation performance in colloidal systems.
Collapse
Affiliation(s)
- Jonathan A Diaz-Baca
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B SE1, Canada
| | - Ayyoub Salaghi
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B SE1, Canada
| | - Pedram Fatehi
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B SE1, Canada
| |
Collapse
|
4
|
Salaghi A, Diaz-Baca JA, Fatehi P. Enhanced flocculation of aluminum oxide particles by lignin-based flocculants in dual polymer systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116999. [PMID: 36516704 DOI: 10.1016/j.jenvman.2022.116999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Lignin is an abundant phenolic polymer produced vastly in pulping processes that could be further valorized. In this work, anionic (AKLs) and cationic (CKLs) lignin-based polymers were made by polymerizing kraft lignin (KL) with acrylic acid (AA) or [2-(methacryloyloxy) ethyl] trimethyl-ammonium chloride (METAC), respectively. In the polymerization reactions, various molar ratios of AA or METAC to KL were applied to produce AKLs and CKLs with different characteristics. The produced AKLs and CKLs were used in single and dual systems to flocculate aluminum oxide in suspension. To assess the interaction of these lignin-based polymers with the aluminum oxide particles; the zeta potential, adsorption, and flocculation of the colloidal systems were evaluated comprehensively. The flocculation performance of the lignin-derived polymers was compared with that of the homopolymers of AA and METAC (PAA and PMETAC) and commercially used flocculants. In single polymer systems, among the anionic synthesized polymers and homopolymers, KL-A4 (an AKL) was the best flocculant for the aluminum oxide suspensions owing to its largest molecular weight (330 × 103 g/mol) and highest charge density (-4.2 mmol/g). Remarkably, when KL-A4 and KL-C4 (the CKL with the highest molecular weight and charge density) were used subsequently in a dual polymer system, a larger adsorbed mass and a more viscous adlayer were formed than those of single polymer systems on the surface of aluminum oxide particles. The synergy between KL-A4 and KL-C4 was even stronger than that between homopolymers, which led to more significant adsorption on the aluminum oxide surface and, consequently, more efficient flocculation, producing larger (22 μm) and stronger flocs, regardless of the agitation intensity used in the systems.
Collapse
Affiliation(s)
- Ayyoub Salaghi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Jonathan A Diaz-Baca
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
5
|
Sun X, Zhou B, Cai Z. Determination of the adsorption density of high molecular weight polymers on ultrafine sub-micron particles. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
He W, Chen X, Xu C, Zhou C, Wang C. Internal interaction between chemically-pretreated polypropylene microplastics and floc growth during flocculation: Critical effect on floc properties and flocculation mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Gao W, Alkhalifa Z, Fatehi P. Generation of sulfonated kraft lignin acrylic acid polymer and its use as a flocculant. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2020.1784944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Weijue Gao
- Department of Chemical Engineering and Green Processes Research Centre, Lakehead University, Thunder Bay, Canada
| | - Zainab Alkhalifa
- Department of Chemical Engineering and Green Processes Research Centre, Lakehead University, Thunder Bay, Canada
| | - Pedram Fatehi
- Department of Chemical Engineering and Green Processes Research Centre, Lakehead University, Thunder Bay, Canada
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
8
|
Wu H, Huang Y, Liu B, Han G, Su S, Wang W, Yang S, Xue Y, Li S. An efficient separation for metal-ions from wastewater by ion precipitate flotation: Probing formation and growth evolution of metal-reagent flocs. CHEMOSPHERE 2021; 263:128363. [PMID: 33297278 DOI: 10.1016/j.chemosphere.2020.128363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Hazardous metal pollution became a severe environmental issue in China. An efficient precipitation-flotation process was developed to achieve fast removal for metal-ions from wastewater. Structure and strength of precipitate particles/flocs significantly influence the flotation removal of metal-ions. Formation and growth-evolution of precipitate flocs in precipitate flotation were studied by stage analysis of precipitate particles-formation, flocs-regulation and flotation separation. The results demonstrate that early formed precipitates MHA(humics-metal complexing particles) have small particle size, high fractal dimension, low strength and recovery factor. The addition of Fe3+ and CTAB(cetyl trimethyl ammonium bromide) reagents make the precipitate particles aggregated to flocs(MHA-Fe, MHA-Fe-CTAB) much more large, loose, coarse, and small-density. The final generated MHA-Fe-CTAB flocs are hard to be broken up, easy to be recovered and efficient to be separated by flotation process. The flotation removal of MHA-Fe-CTAB flocs is clearly higher than that of MHA or MHA-Fe. The flotation results of MHA-Fe-CTAB are as follows: flotation removal of 98.7 ± 0.40%-99.9 ± 0.10%, residual TOC of 0.96 ± 0.38-1.35 ± 0.41 mg/L and turbidity of 0.44 ± 0.09-0.63 ± 0.16 NTU. Introducing Fe3+ and CTAB reagents into flotation solution contributes to the growth-evolution of precipitate flocs, which could intensify the metal-ions removal via precipitate flotation process and result in more ideal purification indexes for metal-containing wastewater.
Collapse
Affiliation(s)
- Hongyang Wu
- School of Chemical Engineering, Zhengzhou University, 450001, Zhengzhou, PR China; School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, 471000, Luoyang, PR China
| | - Yanfang Huang
- School of Chemical Engineering, Zhengzhou University, 450001, Zhengzhou, PR China
| | - Bingbing Liu
- School of Chemical Engineering, Zhengzhou University, 450001, Zhengzhou, PR China
| | - Guihong Han
- School of Chemical Engineering, Zhengzhou University, 450001, Zhengzhou, PR China.
| | - Shengpeng Su
- School of Chemical Engineering, Zhengzhou University, 450001, Zhengzhou, PR China
| | - Wenjuan Wang
- School of Chemical Engineering, Zhengzhou University, 450001, Zhengzhou, PR China
| | - Shuzhen Yang
- School of Chemical Engineering, Zhengzhou University, 450001, Zhengzhou, PR China
| | - Yubin Xue
- School of Chemical Engineering, Zhengzhou University, 450001, Zhengzhou, PR China
| | - Shuangqing Li
- School of Chemical Engineering, Zhengzhou University, 450001, Zhengzhou, PR China
| |
Collapse
|
9
|
Influence of molecular weight on polyacrylic acid flocculation of sub-micron titanium dioxide. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Experimental and modeling analysis of lignin derived polymer in flocculating aluminium oxide particles. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Guo Y, Kong F, Fatehi P. Generation and Use of Lignin- g-AMPS in Extended DLVO Theory for Evaluating the Flocculation of Colloidal Particles. ACS OMEGA 2020; 5:21032-21041. [PMID: 32875240 PMCID: PMC7450620 DOI: 10.1021/acsomega.0c02598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 05/31/2023]
Abstract
In this work, Kraft lignin (KL) was polymerized with 2-acrylamido-2-methylpropane sulfonic acid (AMPS) to generate an anionic water-soluble KL-g-AMPS polymer. The effects of reaction conditions on the charge density of polymers were evaluated to induce lignin-based polymers with the highest anionic charge density. The optimal process conditions were 2.5 mol/mol AMPS/lignin, 0.6 g/g solid/water ratio, 2.0 initiator/lignin weight ratio, 80 °C, 120 min, and pH 1.5, which yielded KL-g-AMPS with the anionic charge density of 4.28 mequiv/g and the grafting ratio of 285%. The chemical structure and compositions of the polymers were confirmed by 1H NMR and elemental analysis. The flocculation performance of the polymer was evaluated in an aluminum oxide suspension, and its performance was compared with that of a homopolymer of AMPS produced under the same conditions. In addition, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory was applied to study the flocculation mechanism of the polymers and alumina particles. The results revealed that electrostatic interaction was found to be the dominant force in this flocculation process.
Collapse
Affiliation(s)
- Yanzhu Guo
- Liaoning
Key Lab of Pulp and Paper Engineering, Dalian
Polytechnic University, Dalian, Liaoning 116034, China
- Department
of Chemical Engineering, Lakehead University, Thunder Bay, Ontario P7B5E1, Canada
| | - Fangong Kong
- Key
Laboratory of Pulp & Paper Science and Technology, Ministry of
Education, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Pedram Fatehi
- Department
of Chemical Engineering, Lakehead University, Thunder Bay, Ontario P7B5E1, Canada
- Key
Laboratory of Pulp & Paper Science and Technology, Ministry of
Education, Qilu University of Technology, Jinan, Shandong 250353, China
| |
Collapse
|
12
|
Gao W, Fatehi P. Lignin for polymer and nanoparticle production: Current status and challenges. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23620] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Weijue Gao
- Chemical Engineering DepartmentLakehead University Thunder Bay Ontario Canada
| | - Pedram Fatehi
- Chemical Engineering DepartmentLakehead University Thunder Bay Ontario Canada
- State Key Laboratory of Paper Science and Technology of Ministry of EducationQilu University of Technology (Shandong Academy of Sciences) Jinan China
| |
Collapse
|
13
|
|