1
|
Kang F, Meng Y, Ge Y, Zhang Y, Gao H, Ren X, Wang J, Hu S. Calcium-based polymers for suppression of soil acidification by improving acid-buffering capacity and inhibiting nitrification. J Environ Sci (China) 2024; 139:138-149. [PMID: 38105042 DOI: 10.1016/j.jes.2023.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 12/19/2023]
Abstract
Soil acidification is a major threat to agricultural sustainability in tropical and subtropical regions. Biodegradable and environmentally friendly materials, such as calcium lignosulfonate (CaLS), calcium poly(aspartic acid) (PASP-Ca), and calcium poly γ-glutamic acid (γ-PGA-Ca), are known to effectively ameliorate soil acidity. However, their effectiveness in inhibiting soil acidification has not been studied. This study aimed to evaluate the effect of CaLS, PASP-Ca, and γ-PGA-Ca on the resistance of soil toward acidification as directly and indirectly (i.e., via nitrification) caused by the application of HNO3 and urea, respectively. For comparison, Ca(OH)2 and lignin were used as the inorganic and organic controls, respectively. Among the materials, γ-PGA-Ca drove the substantial improvements in the pH buffering capacity (pHBC) of the soil and exhibited the greatest potential in inhibiting HNO3-induced soil acidification via protonation of carboxyl, complexing with Al3+, and cation exchange processes. Under acidification induced by urea, CaLS was the optimal one in inhibiting acidification and increasing exchangeable acidity during incubation. Furthermore, the sharp reduction in the population sizes of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) confirmed the inhibition of nitrification via CaLS application. Therefore, compared to improving soil pHBC, CaLS may play a more important role in suppressing indirect acidification. Overall, γ-PGA-Ca was superior to PASP-Ca and CaLS in enhancing the soil pHBC and the its resistance to acidification induced by HNO3 addition, whereas CaLS was the best at suppressing urea-driven soil acidification by inhibiting nitrification. In conclusion, these results provide a reference for inhibiting soil re-acidification in intensive agricultural systems.
Collapse
Affiliation(s)
- Fei Kang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yunshan Meng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanning Ge
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yun Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Xueqin Ren
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Shuwen Hu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Dong Y, Hua Z, Zeng Y, Yue T, Tang H, Sun W. High efficiency regulating sedimentation and rheological properties of copper tailings using polycarboxylate superplasticizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168637. [PMID: 37984662 DOI: 10.1016/j.scitotenv.2023.168637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
The recovery of low grade and fine particle copper ore usually requires sufficient dissociation, which reduces the particle size to the submicron level, presenting new challenges in subsequent copper tailings disposal. Flocculants can improve tailings sedimentation efficiency, but they also change the rheological properties of the slurry, resulting in low efficiency and high energy consumption during long-distances pumping. To address this issue, this study introduced polycarboxylate ether (PCE) superplasticizers as auxiliary additives for tailings treatment to improve fine particles sedimentation efficiency while enhancing slurry flowability. The results showed that compared to non-ionic polyacrylamide (NPAM) treated slurries, the synergistic effects of PCE and NPAM increased the initial sedimentation rate (ISR) by up to 3.4 times while decreasing the yield stress by up to 8 times and the thixotropic loop area by 10.5 times. DLVO theory calculations showed that PCE mainly affects particle interactions through a significant decrease in electrostatic repulsion. By in-situ monitoring with a focused beam reflectance measurement (FBRM) device, it was demonstrated that the synergistic effect of PCE improved the flocculation ability, strength, and regrowth ability of flocs. Furthermore, strong correlations were found between floc properties and fluid rheological properties. Overall, this study indicated that PCE additive was a promising reagent for fine particles slurry rapid settling and flowability enhancement, providing a new approach for copper tailings disposal.
Collapse
Affiliation(s)
- Yingdi Dong
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Engineering Research Center of Carbon Emission Reduction in Development and Utilization of Metal Resources, Ministry of Education, Central South University, Changsha 410083, China
| | - Zhongbao Hua
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Engineering Research Center of Carbon Emission Reduction in Development and Utilization of Metal Resources, Ministry of Education, Central South University, Changsha 410083, China
| | - Yong Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Engineering Research Center of Carbon Emission Reduction in Development and Utilization of Metal Resources, Ministry of Education, Central South University, Changsha 410083, China
| | - Tong Yue
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Engineering Research Center of Carbon Emission Reduction in Development and Utilization of Metal Resources, Ministry of Education, Central South University, Changsha 410083, China
| | - Honghu Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Engineering Research Center of Carbon Emission Reduction in Development and Utilization of Metal Resources, Ministry of Education, Central South University, Changsha 410083, China.
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Engineering Research Center of Carbon Emission Reduction in Development and Utilization of Metal Resources, Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Wang S, Chen H. Enhanced dewaterability of sewage sludge by grafted cationic lignin-based flocculants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166958. [PMID: 37696410 DOI: 10.1016/j.scitotenv.2023.166958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Lignin-based flocculants are widely used for wastewater purification, but their application in sludge dewatering has not yet been documented. In this study, a novel cationic lignin-based flocculant named LS-g-CPA was prepared by grafting cationic polyacrylamide (CPA) synthesized from methacryloyloxy ethyltrimethyl ammonium chloride (DMC) and acrylamide (AM) onto sodium lignosulfonate (LS), and its roles and underlying mechanisms in sludge conditioning were investigated. The results showed that LS-g-CPA effectively improved the dewaterability of sludge, reducing the filtration resistance and filter cake moisture content of sludge from 0.61 ± 0.05 × 1012 m/kg to 0.14 ± 0.02 × 1012 m/kg and 85.64 ± 0.25 % to 76.84 ± 0.41 %, respectively. The dewatering performance of LS-g-CPA was positively correlated with the DMC/AM ratio. The quaternary ammonium groups brought by DMC disrupted the reticular structure of extracellular polymeric substances, exposing hydrophobic residues and releasing bound water. Nevertheless, the key to LS-g-CPA for improving sludge dewatering lies more in the amphoteric flocculant properties that enhance sludge flocculation and the octopus-type structure that provides good drainage channels. This study reveals that lignin-based flocculants are effective in improving the dewaterability of sludge, which provides direct evidence for their application in sludge dewatering.
Collapse
Affiliation(s)
- Shiqin Wang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
4
|
Ma M, Xu F, Liu J, Li B, Liu Z, Gao B, Li Q. Insights into S-doped iron-based carbonaceous nanocomposites with enhanced activation of persulfate for rapid degradation of organic pollutant. CHEMOSPHERE 2023; 335:139006. [PMID: 37257657 DOI: 10.1016/j.chemosphere.2023.139006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
In the work, S-doped iron-based carbon nanocomposites (Fe-S@CN) for activating persulfate (PS) were prepared by calcining iron-loaded sodium lignosulfonate. The characterization revealed that the main substances of Fe-S@CN were FeS and Fe3C, which were distributed on porous carbon nanosheets in rod-like morphology. In the Fe-S@CN/PS system, carbamazepine could be completely removed within 30 min, and the relative contribution of hydroxyl radicals (OH·), sulfate radicals (SO4·-) and total singlet oxygen (1O2) and superoxide radicals (O2·-) for carbamazepine removal were approximated as 8.7%, 19.2% and 72.1%, respectively. Electron paramagnetic resonance spectroscopy demonstrated that S doping promoted the formation of various active species. Compared with the catalyst without S doping, Fe-S@CN exhibited higher activation performance (1.48-fold) for PS due to the enhanced electron transfer rate and facilitated Fe2+/Fe3+ cycle. Density functional theory calculations showed that S doping promoted the binding between the catalyst and PS, and enhanced the overall internal electron density of the catalyst. Fe-S@CN exhibited excellent catalytic performance over a wide pH range (3.0-11.0). The active sites of Fe-S@CN used in the cycling experiments was also largely recovered after thermal regeneration. Overall, this study shows for the first time the impact of SLS as an S dopant on enhanced PS activation.
Collapse
Affiliation(s)
- Mengyu Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, PR China
| | - Fei Xu
- Environment Research Institute, Shandong University, Qingdao, 266200, PR China
| | - Jikai Liu
- Jining Ecological and Environmental Technology Guarantee Center, Jining, 272000, PR China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zhen Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, PR China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, PR China.
| |
Collapse
|
5
|
Liang Y, Deng L, Feng Z, Ouyang Q, Wu X, Quan W, Zhu Y, Ye H, Wu K, Luo H. A Chitosan-Based Flocculation Method for Efficient Recovery of High-Purity B-Phycoerythrin from a Low Concentration of Phycobilin in Wastewater. Molecules 2023; 28:molecules28083600. [PMID: 37110834 PMCID: PMC10143359 DOI: 10.3390/molecules28083600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Increasing the yield and purity of B-phycoerythrin (B-PE) can improve the economic state of microalgae industrial processing. One method of cost reduction involves the recovery of remaining B-PE from wastewater. In this study, we developed a chitosan (CS)-based flocculation technique for the efficient recovery of B-PE from a low concentration of phycobilin in wastewater. We investigated the effects of the molecular weight of chitosan, B-PE/CS mass ratio, and solution pH on the flocculation efficiency of CS and the effects of phosphate buffer concentration and pH on the recovery rate of B-PE. The maximum flocculation efficiency of CS, recovery rate, and purity index of B-PE were 97.19% ± 0.59%, 72.07% ± 1.37%, and 3.20 ± 0.025 (drug grade), respectively. The structural stability and activity of B-PE were maintained during the recovery process. Economic evaluation revealed that our CS-based flocculation method is more economical than the ammonium sulfate precipitation method is. Furthermore, the bridging effect and electrostatic interaction play important roles in B-PE/CS complex flocculation process. Hence, our study provides an efficient and economical method to recover high-purity B-PE from a low concentration of phycobilin in wastewater, which promoted the application of B-PE as a natural pigment protein in food and chemical applications.
Collapse
Affiliation(s)
- Yingye Liang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Luming Deng
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhenhui Feng
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Qianqian Ouyang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Zhanjiang Engineering Research Center for Algae High-Value Utilization, Zhanjiang 524023, China
| | - Xia Wu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Zhanjiang Engineering Research Center for Algae High-Value Utilization, Zhanjiang 524023, China
| | - Weiyan Quan
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Zhanjiang Engineering Research Center for Algae High-Value Utilization, Zhanjiang 524023, China
| | - Yuzhen Zhu
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Zhanjiang Engineering Research Center for Algae High-Value Utilization, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Hua Ye
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
| | - Kefeng Wu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Hui Luo
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Zhanjiang Engineering Research Center for Algae High-Value Utilization, Zhanjiang 524023, China
| |
Collapse
|
6
|
Tang T, Fei J, Zheng Y, Xu J, He H, Ma M, Shi Y, Chen S, Wang X. Water‐soluble Lignosulfonates: Structure, Preparation, and Application. ChemistrySelect 2023. [DOI: 10.1002/slct.202204941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Tao Tang
- College of Materials Science and Engineering Zhejiang University of Technology Address: 18 Chaowang Road Hangzhou 310014 China
| | - Junhao Fei
- College of Materials Science and Engineering Zhejiang University of Technology Address: 18 Chaowang Road Hangzhou 310014 China
| | - Yi Zheng
- College of Materials Science and Engineering Zhejiang University of Technology Address: 18 Chaowang Road Hangzhou 310014 China
| | - Jian Xu
- College of Materials Science and Engineering Zhejiang University of Technology Address: 18 Chaowang Road Hangzhou 310014 China
| | - Huiwen He
- College of Materials Science and Engineering Zhejiang University of Technology Address: 18 Chaowang Road Hangzhou 310014 China
| | - Meng Ma
- College of Materials Science and Engineering Zhejiang University of Technology Address: 18 Chaowang Road Hangzhou 310014 China
| | - Yanqin Shi
- College of Materials Science and Engineering Zhejiang University of Technology Address: 18 Chaowang Road Hangzhou 310014 China
| | - Si Chen
- College of Materials Science and Engineering Zhejiang University of Technology Address: 18 Chaowang Road Hangzhou 310014 China
| | - Xu Wang
- College of Materials Science and Engineering Zhejiang University of Technology Address: 18 Chaowang Road Hangzhou 310014 China
| |
Collapse
|
7
|
Yuan Y, Wang S, Wu P, Yuan T, Wang X. Lignosulfonate in situ-modified reduced graphene oxide biosensors for the electrochemical detection of dopamine. RSC Adv 2022; 12:31083-31090. [PMID: 36348997 PMCID: PMC9620500 DOI: 10.1039/d2ra05635f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023] Open
Abstract
Lignosulfonate (LS), a biomass by-product from sulfite pulping and the paper-making industry, which has many excellent characteristics, such as renewable, environmentally friendly, amphiphilic nature, and especially the abundant content of hydrophilic functional groups in its architecture, making it highly reactive and can be used as a sensitive material in sensors to show changes in electrical signals. Herein, we report a one-step in situ method to fabricate lignosulfonate-modified reduced graphene oxide (LS-rGO) green biosensors, which can be used for the sensitive electrochemical detection of dopamine without interference from uric acid and ascorbic acid. The modified LS molecular layers act as chemical-sensing layers, while the rGO planar sheets function as electric-transmitting layers in the as-assembled dopamine biosensors. After the in situ-decoration of the LS modifier, the sensing performance of LS-rGO for the detection of dopamine was much higher than that of the pure rGO electrode, and the highest current response of the biosensor toward dopamine greatly improved from 11.2 μA to 52.07 μA. The electrochemical sensitivity of the modified biosensor was optimized to be 0.43 μA μM-1, and the detection limit was as low as 0.035 μM with a wide linear range (0.12-100 μM), which is better than that of most previously reported metal- and organic-based modified graphene electrodes. The newly designed biosensor has unique advantages including rapid, stable, sensitive and selective detection of dopamine without interference, providing a facile pathway for the synthesis of green resource-derived sensing materials instead of the traditional toxic and expensive modifiers.
Collapse
Affiliation(s)
- Ying Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 P. R. China
| | - Shuangxin Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 P. R. China
| | - Ping Wu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 P. R. China
| | - Tongqi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 P. R. China
| | - Xiluan Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 P. R. China
| |
Collapse
|
8
|
Kang F, Lv QL, Liu J, Meng YS, Wang ZH, Ren XQ, Hu SW. Organic-inorganic calcium lignosulfonate compounds for soil acidity amelioration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74118-74132. [PMID: 35633460 DOI: 10.1007/s11356-022-20461-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Soil acidification is a problem widely occurring worldwide, which severely threaten food security and agricultural sustainability. Calcium lignosulfonate (CaLS), a cheap and ecofriendly compound, is used for the first time to amend acid soil by utilizing its unique organic and inorganic functional moieties simultaneously. Both column leaching and incubation experiments were conducted to investigate the comparative effects of CaLS (four rates at 5, 10, 15, 20 g kg-1) and compared with conventional amendments, including gypsum (5 g kg-1), lignin (5 g kg-1), L + G (each at 5 g kg-1), and control. The soil pH, exchangeable acidity and base cations, organic carbon, and different Al fractions were determined to unravel the ameliorative performance and mechanism of the treatments. Regardless of application modes and dosages, the results demonstrated that CaLS incorporation significantly increased soil pH, exchangeable Ca2+, cation exchange capacity, and organic carbon and decreased the contents of exchangeable acidity, especially exchangeable Al3+. The ameliorative mechanism was that amendment material led to the displacement of H+ and Al3+ off soil colloids by Ca2+. These released H+ and Al3+ which complexed with lignosulfonate anions into soluble organo-Al were all quickly leached from the soil column. The CaLS addition enhanced the transformation of exchangeable Al3+ and low-to-medium organo-Al complexes into highly stable organically bound fractions and immobilized into the soil. The complexing of CaLS functional groups with Al3+ impeded Al3+ from undergoing hydrolysis to produce more H+. As an environmental-friendly material, CaLS can be a promising amendment for soil acidity and Al toxicity amelioration.
Collapse
Affiliation(s)
- Fei Kang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan west road, Haidian, Beijing, 100193, People's Republic of China
| | - Qi-Lin Lv
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan west road, Haidian, Beijing, 100193, People's Republic of China
| | - Jin Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan west road, Haidian, Beijing, 100193, People's Republic of China
| | - Yun-Shan Meng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan west road, Haidian, Beijing, 100193, People's Republic of China
| | - Zi-He Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan west road, Haidian, Beijing, 100193, People's Republic of China
| | - Xue-Qin Ren
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan west road, Haidian, Beijing, 100193, People's Republic of China
| | - Shu-Wen Hu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan west road, Haidian, Beijing, 100193, People's Republic of China.
| |
Collapse
|
9
|
Nath K, Patel VB, Dave HK, Panchani SC. Valorisation of sodium lignosulfonate by ultrafiltration of spent sulphite liquor using commercial polyethersulfone membrane. Chem Ind 2022. [DOI: 10.1080/00194506.2022.2028197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kaushik Nath
- Department of Chemical Engineering, G H Patel College of Engineering & Technology, Vallabh Vidyanagar, India
| | - Vinay B. Patel
- Department of Chemical Engineering, G H Patel College of Engineering & Technology, Vallabh Vidyanagar, India
| | - Haresh K. Dave
- Department of Chemical Engineering, G H Patel College of Engineering & Technology, Vallabh Vidyanagar, India
| | - Suresh C. Panchani
- Department of Chemical Engineering, G H Patel College of Engineering & Technology, Vallabh Vidyanagar, India
| |
Collapse
|
10
|
Puumala LS, Fatehi P. Dispersion performance of hydroxypropyl sulfonated lignin in aluminum oxide suspension. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Feizi ZH, Fatehi P. Interaction of Carboxyalkylated Cellulose Nanocrystals and Antibiotics. ACS APPLIED BIO MATERIALS 2021; 4:4165-4175. [PMID: 35006829 DOI: 10.1021/acsabm.0c01664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although antibiotics are beneficial for treating infections, their release into the environment has raised global concerns. In this work, the interactions of cellulose nanocrystal (CNC) derivatives with sulfamethoxazole (SMX), ciprofloxacin (CIP), and doxycycline (DOX) antibiotics were studied fundamentally. CNC was carboxyalkylated to bear different carbon chain lengths but similar negative charges on its surface. The highest level of adsorption of DOX on the carboxypantadecanated CNC (i.e., carboxyalkylated CNC with more carbon spacer, PCNC) occurred at pH 6.0, which was due to the electrostatic and π interactions along with hydrogen bonding. The contact angle and quartz crystal microbalance (QCM) adsorption analyses revealed a faster interaction and adsorption of DOX than other antibiotics on PCNC. The results also depicted the diffusion of DOX into the porous structure of CNC derivatives, especially that of PCNC. Also, a more compact adsorbed layer of DOX was formed on PCNC than on other CNC derivatives. Carboxyalkylation was observed to slightly reduce the surface area of CNC, while the antibiotic adsorption drastically increased the surface area of CNC due to their adsorption on the surface. XPS analysis revealed that carboxyalkylation significantly enhanced the C-C/C-H bond, while antibiotic adsorption on PCNC enhanced C-N/C-O and C-C/C-H bonds in antibiotic-loaded CNC samples. Overall, carboxyalkylated CNC was observed to have an outstanding affinity for capturing antibiotics, especially DOX, which could pave the way for the use of CNC in such applications that surface/antibiotic interactions were essential.
Collapse
Affiliation(s)
- Zahra Hosseinpour Feizi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| |
Collapse
|
12
|
Feizi ZH, Fatehi P. Interaction of hairy carboxyalkyl cellulose nanocrystals with cationic surfactant: Effect of carbon spacer. Carbohydr Polym 2021; 255:117396. [PMID: 33436224 DOI: 10.1016/j.carbpol.2020.117396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/26/2020] [Accepted: 11/07/2020] [Indexed: 10/23/2022]
Abstract
Tuning the surface chemistry of nanocellulose is essential for developing its end-use applications. Herein, different carboxyalkylated cellulose nanocrystals (CNC) with similar charge densities but with tunable hairy structures were produced. The effect of carbon spacer of the grafted groups on the interaction of the CNC and a cationic surfactant, myristyl trimethyl ammonium bromide (MTAB), at different pH and salinity was explored. The CNC with longer grafted chain length was more hydrophobic, adsorbed more MTAB, and formed a more compact MTAB adlayer than did CNC with the shorter chain length. Also, the adsorption was higher at neutral pH, implying a high electrostatic attraction and hydrophobic interaction between substrates. The hydrophobic interaction of MTAB and hairy CNC in saline systems improved its adsorption. Although MTAB adsorbed more when its concentration was higher than its critical micelle concentration (CMC), the adsorbed adlayer had a less compact structure on the CNC surfaces.
Collapse
Affiliation(s)
- Zahra Hosseinpour Feizi
- Biorefining Research Institute, Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B5E1, Canada
| | - Pedram Fatehi
- Biorefining Research Institute, Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B5E1, Canada.
| |
Collapse
|
13
|
Liu X, Yin H, Zhao J, Guo Z, Liu Z, Sang Y. Investigation of molecular weight effect on lignin flocculation induced by poly(diallyldimethylammonium chloride) (PDADMAC) through population balance modeling. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Liu Q, Tang J, Li X, Lin Q, Xiao R, Zhang M, Yin G, Zhou Y. Effect of lignosulfonate on the adsorption performance of hematite for Cd(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139952. [PMID: 32534277 DOI: 10.1016/j.scitotenv.2020.139952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Lignin is a precursor of humus in soil and sediment. Lignin can be separated from vascular plants in the form of lignosulfonate via pulping processes. On the other hand, composites of iron oxide and organic matter can adsorb heavy metals, and thus influence the migration of these heavy metals in the environment. In this paper, a hematite/lignosulfonate composite (HLS) was prepared via coprecipitation to compare the adsorption performance of hematite (α-Fe2O3) toward Cd(II) before and after the incorporation of lignosulfonate (LS). The HLS is found to exhibit a weakly crystalline structure and possess a large number of nanoscale particles. Specific surface area of HLS (291.97 m2/g) is about 11 times that of α-Fe2O3, and the pore volume of HLS (0.22 cm3/g) is twice that of α-Fe2O3. The adsorption of Cd(II) is well illustrated by the pseudo-second-order adsorption kinetics and the initial adsorption rate (h) of HLS is 13.83 times that of α-Fe2O3. The maximum adsorption capacities are significantly improved from 4.89-6.35 mg/g (α-Fe2O3) to 39.03-53.65 mg/g (HLS). A greater affinity and more favorable association between Cd(II) and HLS is observed via fitting models. The incorporation of LS provides HLS with significantly better adsorption properties toward Cd(II) than α-Fe2O3, as is further confirmed by FT-IR and XPS characterization. Fe-O-O-H and Fe-O-H structures as well as more hydroxyl groups are observed, which promote the adsorption performance since the process are mainly influenced by complexation via coordination bonds.
Collapse
Affiliation(s)
- Qianjun Liu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jiepeng Tang
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiang Li
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qintie Lin
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Rongbo Xiao
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Min Zhang
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Guangcai Yin
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yangmei Zhou
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
15
|
Influence of molecular weight on polyacrylic acid flocculation of sub-micron titanium dioxide. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Fabrication of amphoteric lignin and its hydrophilicity/oleophilicity at oil/water interface. J Colloid Interface Sci 2020; 561:231-243. [DOI: 10.1016/j.jcis.2019.11.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/18/2022]
|
17
|
Eraghi Kazzaz A, Fatehi P. Interaction of synthetic and lignin-based sulfonated polymers with hydrophilic, hydrophobic, and charged self-assembled monolayers. RSC Adv 2020; 10:36778-36793. [PMID: 35517948 PMCID: PMC9057052 DOI: 10.1039/d0ra07554j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
There is a need to understand the role of polymer structure on its interaction with surfaces to produce effective functional surfaces. In this work, we produced two anionic polymers of lignin-3-sulfopropyl methacrylate (L-S) and poly(vinyl alcohol-co-vinyl acetate)-3-sulfopropyl methacrylate (PVA-S) with similar charge densities and molecular weights. On the gold-coated surface, we deposited self-assembled monolayers (SAM) bearing different terminal moieties namely, hydroxyl, carboxyl, methyl, and amine groups of alkanethiols. This study highlighted the difference between the interaction of L-S and PVA-S and functionalized self-assembled surfaces. The information was generated using advanced tools, such as an X-ray photoelectron spectroscopy (XPS), and a quartz crystal microbalance with dissipation (QCM-D), which facilitated the correlation development between polymer properties and deposition performance on the functionalized surfaces. The higher deposition of PVA-S than L-S onto OH and COOH surfaces was observed due to its greater hydrogen bonding development and higher solubility. The solubility and structure of PVA-S were also beneficial for its higher adsorption than L-S onto CH3 and NH2 surfaces. However, the variation in pH, temperature, and salt significantly affected the adsorption of the macromolecules. The interaction mechanism of synthetic and lignin based sulfonated materials with well-designed functional surfaces was investigated systematically.![]()
Collapse
Affiliation(s)
- Armin Eraghi Kazzaz
- Biorefining Research Institute
- Green Processes Research Centre
- Chemical Engineering Department
- Lakehead University
- Thunder Bay
| | - Pedram Fatehi
- Biorefining Research Institute
- Green Processes Research Centre
- Chemical Engineering Department
- Lakehead University
- Thunder Bay
| |
Collapse
|