1
|
El-Bahi A, Ait-Khouia Y, Benzaazoua M, Hakkou R, Taha Y. Biobased collectors for sustainable phosphate ore flotation: Enhanced performance and selectivity. Adv Colloid Interface Sci 2025; 341:103506. [PMID: 40209594 DOI: 10.1016/j.cis.2025.103506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 03/05/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Diverse collectors are employed in mineral flotation; they are categorized into distinct families distinguished by a particular characteristic that enables their adsorption onto a given mineral. All these collectors are designed to increase the hydrophobicity of a mineral's surface to improve its floatability and separation in the froth flotation process. Phosphate ore enrichment using flotation has long utilized anionic collectors in the form of synthetic fatty acids derived from petrolic raw materials. This nonrenewable material has several disadvantages, including lack of biodegradability, possible toxicity and difficult conditions of use. This paper aims to explore the effect of eco-friendly and promising alternatives that can substitute the conventional collectors and introduce some new non-toxic reagents into the flotation additives industry. For this purpose, the different compounds used as biobased collectors are examined and their performance is evaluated, relying on some fundamental studies and flotation tests. The adsorption behavior and efficiency of these compounds are assessed based on the analysis of previous zeta potential measurements, Fourier transform infrared spectra, adsorption tests, contact angle determinations, and flotation test findings. Selectivity of the collector is a key factor in determining the effectiveness of this reagent. Therefore, this review discusses the main factors affecting the selectivity of biobased collectors toward phosphate ore minerals. Additionally, the different strategies to improve this selectivity are emphasized. Lastly, a comparison of the performance of biobased collectors to conventional reagents is established with the aim of determining their main advantages and disadvantages.
Collapse
Affiliation(s)
- Asmae El-Bahi
- Geology & Sustainable Mining Institute (GSMI), Mohammed VI Polytechnic University, Lot 660. Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Yassine Ait-Khouia
- Geology & Sustainable Mining Institute (GSMI), Mohammed VI Polytechnic University, Lot 660. Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Mostafa Benzaazoua
- Geology & Sustainable Mining Institute (GSMI), Mohammed VI Polytechnic University, Lot 660. Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Rachid Hakkou
- Geology & Sustainable Mining Institute (GSMI), Mohammed VI Polytechnic University, Lot 660. Hay Moulay Rachid, Ben Guerir 43150, Morocco; IMED-Lab, Faculty of Science and Technology, Cadi Ayyad University (UCA), BP 549, Marrakech 40000, Morocco
| | - Yassine Taha
- Geology & Sustainable Mining Institute (GSMI), Mohammed VI Polytechnic University, Lot 660. Hay Moulay Rachid, Ben Guerir 43150, Morocco.
| |
Collapse
|
2
|
El-Bahi A, Taha Y, Ait-Khouia Y, Hakkou R, Benzaazoua M. Advancing phosphate ore minerals separation with sustainable flotation reagents: An investigation into highly selective biobased depressants. Adv Colloid Interface Sci 2023; 317:102921. [PMID: 37209485 DOI: 10.1016/j.cis.2023.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Froth flotation has been a commonly employed technique to enrich natural ores by removing impurities based on the surface properties of minerals. This process involves the use of various reagents, including collectors, depressants, frothers, and activators, which are often chemically synthesized and may represent environmental risks. Therefore, there is a growing need to develop biobased reagents that offer more sustainable alternatives. The aim of this review is to provide a comprehensive assessment of the potential of biobased depressants as a sustainable alternative to traditional reagents in selective flotation process for phosphate ore minerals. To achieve this objective, the review investigates the extraction and the purification methods of different biobased depressants, analyzes the specific conditions for reagent interaction with minerals, and assess the biobased depressants' performance through a range of fundamental studies. These studies aim to (i) provide a better understanding of the adsorption behavior of some biobased depressants onto the surfaces of apatite, calcite, dolomite, and quartz comprised in different mineral systems by measuring their zeta potential and analyzing their Fourier transform infrared spectra before and after contact with these reagents, (ii) determine the depressants' adsorption amounts, (iii) evaluate their effect on the contact angle of bare minerals, and (iv) assess their ability to inhibit the flotation of the studied minerals. The outcomes revealed the potential use and the promising applicability of these unconventional reagents since their performance is comparable to that of conventional reagents. In addition to their good effectiveness, these biobased depressants have the added advantages of being cost effective, biodegradable, non-toxic, and ecofriendly. Nevertheless, further research and investigations are required to improve the selectivity and, consequently, the effectiveness of biobased depressants.
Collapse
Affiliation(s)
- Asmae El-Bahi
- Geology & Sustainable Mining Institute (GSMI), Mohammed VI Polytechnic University, Lot 660. Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Yassine Taha
- Geology & Sustainable Mining Institute (GSMI), Mohammed VI Polytechnic University, Lot 660. Hay Moulay Rachid, Ben Guerir 43150, Morocco.
| | - Yassine Ait-Khouia
- Geology & Sustainable Mining Institute (GSMI), Mohammed VI Polytechnic University, Lot 660. Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Rachid Hakkou
- Geology & Sustainable Mining Institute (GSMI), Mohammed VI Polytechnic University, Lot 660. Hay Moulay Rachid, Ben Guerir 43150, Morocco; IMED-Lab, Faculty of Science and Technology, Cadi Ayyad University (UCA), BP 549, Marrakech 40000, Morocco
| | - Mostafa Benzaazoua
- Geology & Sustainable Mining Institute (GSMI), Mohammed VI Polytechnic University, Lot 660. Hay Moulay Rachid, Ben Guerir 43150, Morocco
| |
Collapse
|
3
|
Miao Y, Wen S, Shen Z, Zhang Q, Feng Q. Enhancement of Xanthate Adsorption on Cerussite Surfaces by Pb(II) Activation and Its Effect on Floatability. Molecules 2023; 28:molecules28062455. [PMID: 36985427 PMCID: PMC10054074 DOI: 10.3390/molecules28062455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Cerussite is a lead oxide mineral resource that is typically enriched through sulfidization flotation. The surface sulfidation degree and the high solubility of cerussite strongly affect the flotation ability of cerussite. In the current work, lead ions were used to pretreat cerussite to intensify its sulfidization flotation. The sulfidization mechanism regulating the lead ions pretreatment on cerussite was investigated by the micro-flotation test, ToF-SIMS, zeta potential measurement, adsorption test, and XPS. The results from the micro-flotation test demonstrated that the floatability of cerussite could be improved by adding an appropriate amount of lead ions. Compared with the treatment involving only Na2S, the maximum recovery increased by 17.57%. Adsorption experiments showed that lead modification improved the stability of xanthate products on the surface of cerussite. According to the measurement of zeta potential and the results of ToF-SIMS, the addition of lead ion Pb pretreatment increased the number of active Pb sites adsorbed by xanthate, thereby improving the formation of hydrophobic Pb-dilute precipitate. Therefore, the interaction between lead ions and the surface of cerussite enhances the strength and stability of the hydrophobic layer, resulting in enhanced hydrophobicity of cerussite.
Collapse
Affiliation(s)
- Yongchao Miao
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming University of Science and Technology, Kunming 650093, China
| | - Shuming Wen
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming University of Science and Technology, Kunming 650093, China
- Correspondence: (S.W.); (Q.F.)
| | - Zhihao Shen
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming University of Science and Technology, Kunming 650093, China
| | - Qian Zhang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming University of Science and Technology, Kunming 650093, China
| | - Qicheng Feng
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming University of Science and Technology, Kunming 650093, China
- Correspondence: (S.W.); (Q.F.)
| |
Collapse
|
4
|
Miao Y, Wen S, Zuo Q, Shen Z, Zhang Q, Feng Q. Co-adsorption of NaOL/SHA composite collectors on cassiterite surfaces and its effect on surface hydrophobicity and floatability. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Sun W, Liu W, Liu W, Li P, Chen X, Tong K, Kou W. Adsorption study of potential collector polyoxyethylene ether phosphate on magnesite. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Gong X, Yao J, Yang B, Guo J, Sun H, Yin W. Study on the inhibition mechanism of Guar Gum in the flotation separation of brucite and dolomite in the presence of SDS. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Flotation separation of chalcopyrite from pyrite using a novel O-n-butyl-N-isobutyl thionocarbamate as the selective collector. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Zuo R, Xu Z, Wang X, Yang J, Du X, Du C, Cai W, Xu Y, Wu Z. Adsorption characteristics of strontium by bentonite colloids acting on claystone of candidate high-level radioactive waste geological disposal sites. ENVIRONMENTAL RESEARCH 2022; 213:113633. [PMID: 35700766 DOI: 10.1016/j.envres.2022.113633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The bentonite colloid produced in the deep geological repository of high-level radioactive waste can directly affect the migration of radionuclide strontium when it acts on claystone. The adsorption characteristics of strontium were investigated on claystone with the presence or absence of bentonite colloids from the Suhongtu area of China. The effects of different influencing factors, such as pH and solid content, on the adsorption process were investigated by batch adsorption experiments, and spectroscopic techniques were used to characterize the samples before and after adsorption of strontium. The results show that the presence of bentonite colloids can promote the adsorption of strontium on claystone under alkaline conditions. and the general order kinetic model provided the best fit to the experimental data. Strontium is adsorbed on the surface of claystone and bentonite colloid by ion exchange and surface complexation. Most of the Sr2+ formed SrCO3 with CO32- after ion exchange with Ca2+ and Mg2+ in plagioclase and dolomite, and a small amount of Sr2+ was adsorbed by complexation with -OH, Al-O and Si-O. These results provide a scientific basis for predicting the migration of strontium in subsurface porous media and the siting of high-level radioactive waste repositories.
Collapse
Affiliation(s)
- Rui Zuo
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Zuorong Xu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Xin Wang
- Jinan Rail Transit Group Co., Ltd., Jinan, 250000, China
| | - Jie Yang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China.
| | - Xiaofeng Du
- Shandong Rail Transit Engineering Consulting Co., Ltd., Jinan, 250000, China
| | - Can Du
- Development and Research Center, China Geological Survey, Beijing, 100037, China
| | - Weihai Cai
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Yunxiang Xu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Ziyi Wu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| |
Collapse
|
9
|
Improved flotation separation of sulfide minerals by synthesized surfactant based on para-position methyl effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Wang J, Cai W, Zuo R, Du C. A Study of Sr Sorption Behavior in Claystone from a Candidate High-Level Radioactive Waste Geological Disposal Site under the Action of FeOOH Colloids. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9970. [PMID: 36011607 PMCID: PMC9408631 DOI: 10.3390/ijerph19169970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Colloids have a significant influence on the migration of nuclides in claystone, which is an important geological barrier. The sorption of strontium on claystone in the presence of FeOOH colloids was investigated in samples from the Suhongtu site, a candidate high-level radioactive waste disposal site in China. The effects of colloid amount, solid content, and pH were investigated by batch tests, and the sorption reaction mechanism was analyzed by kinetic modeling and microscopic characterization techniques. The results indicate that the sorption of Sr by claystone increased with the solids content, and the claystone had a stronger Sr sorption capacity under alkaline conditions. The Sr sorption kinetics were best described by the pseudo-first-order and pseudo-second-order models, which revealed that the progress is affected by physical diffusion and chemical sorption. Furthermore, the microscopic characterization results demonstrate that cation exchange reactions and surface complex reactions are the main sorption mechanisms for Sr sorption on claystone. Ca and Mg plasmas in claystone minerals can have cation replacement reactions with Sr, and functional groups such as -OH and [CO3]2- can have complexation reactions with Sr to adsorb Sr on the surface of the claystone. Additionally, the presence of the FeOOH colloid inhibited the sorption effect of claystone slightly. The FeOOH colloid could occupy sorption sites on the claystone surface, which reduces the activity of the functional groups and inhibits the sorption of Sr on claystone.
Collapse
Affiliation(s)
- Jinsheng Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Weihai Cai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Rui Zuo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Can Du
- Development and Research Center, China Geological Survey, Beijing 100037, China
| |
Collapse
|
11
|
Wei Z, Zhang Q, Wang X. New insights on depressive mechanism of citric acid in the selective flotation of dolomite from apatite. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Zhang Q, Wen S, Nie W, Feng Q. Effect of dissolved species of cerussite on quartz flotation in sulfidization xanthate system. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Flotation Separation of Dolomite from Fluorapatite Using Sodium Dodecyl Benzene Sulfonate as the Efficient Collector under Low Temperature. MINERALS 2022. [DOI: 10.3390/min12020228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Flotation is the most often employed process to achieve the selective removal of contaminants from the raw materials used in the manufacturing of phosphate fertilizer. However, sodium oleate (NaOL), as a typical collector, is ineffective because of its low collecting ability under low temperature. As a result, developing and implementing feasible alternatives is critical for the long-term output of mines. In this study, sodium dodecyl benzene sulfonate (SDBS), a low-cost and freely soluble reagent under low temperature was used to examine its collecting ability and selectivity in a fluorapatite-dolomite system by means of single and artificially mixed minerals flotation. The adsorption mechanism was evaluated with the help of XPS analyses. The flotation results demonstrate that SDBS could float both fluorapatite and dolomite, but show a higher affinity towards fluorapatite instead of dolomite. Moreover, SDBS could preferred adsorb onto fluorapatite surface when fluorapatite and dolomite coexist. SDBS is more suitable than NaOL for satisfactory recovery of fluorapatite under low temperature in terms of the higher recovery obtained. The XPS analyses results demonstrate that the adsorption of SDBS on fluorapatite surface was more intensively as opposed to that on dolomite surface and Ca active sites on fluorapatite surface are supposed to be the main location for SDBS attachment.
Collapse
|
14
|
Qin W, Hu J, Zhu H, Jiao F, Pan Z, Jia W, Han J, Chen C. Selective inhibition mechanism of PBTCA on flotation separation of magnesite from calcite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Yang B, Yin W, Yao J, Zhu Z, Sun H, Chen K, Cao S. Selective collection and differential adsorption of pentaethoxylated laurylamine for the flotation recovery of magnesite from quartz. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Sodium tripolyphosphate as a selective depressant for separating magnesite from dolomite and its depression mechanism. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.12.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Wang X, Gao P, Liu J, Gu X, Han Y. Adsorption performance and mechanism of eco-friendly and efficient depressant galactomannan in flotation separation of chalcopyrite and molybdenite. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115257] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Yang B, Yin W, Zhu Z, Sun H, Sheng Q, Fu Y, Yao J, Zhao K. Differential adsorption of hydrolytic polymaleic anhydride as an eco-friendly depressant for the selective flotation of apatite from dolomite. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117803] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|