1
|
Ali MA, Ul Ain MN, Mansha A, Asim S, Zahoor AF. Theoretical investigations of optoelectronic properties, photocatalytic performance as a water splitting photocatalyst and band gap engineering with transition metals (TM = Fe and Co) of K 3VO 4, Na 3VO 4 and Zn 3V 2O 8: a first-principles study. RSC Adv 2024; 14:32700-32720. [PMID: 39421681 PMCID: PMC11484400 DOI: 10.1039/d4ra05492j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
First-principles density functional investigations of the structural, electronic, optical and thermodynamic properties of K3VO4, Na3VO4 and Zn3V2O8 were performed using generalized gradient approximation (GGA) via ultrasoft pseudopotential and density functional theory (DFT). Their electronic structure was analyzed with a focus on the nature of electronic states near band edges. The electronic band structure revealed that between 6% Fe and 6% Co, 6% Co significantly tuned the band gap with the emergence of new states at the gamma point. Notable variations were highlighted in the electronic properties of Na3V(1-x)Fe x O4, Na3V(1-x)Co x O4, K3V(1-x)Fe x O4, K3V(1-x)Co x O4, Zn3(1-x)V2(1-x)Co x O8 and Zn3(1-x)V2(1-x)Fe x O8 (where x = 0.06) due to the different natures of the unoccupied 3d states of Fe and Co. Density of states analysis as well as α (spin up) and β (spin down) magnetic moments showed that cobalt can reduce the band gap by positioning the valence band higher than O 2p orbitals and the conduction band lower than V 3d orbitals. Mulliken charge distribution revealed the presence of the 6s2 lone pair on Zn, greater population and short bond length in V-O bonds. Hence, the hardness and covalent character develops owing to the V-O bond. Elastic properties, including bulk modulus, shear modulus, Pugh ratio and Poisson ratio, were computed and showed Zn3V2O8 to be mechanically more stable than Na3VO4 and K3VO4. Optimal values of optical properties, such as absorption, reflectivity, dielectric function, refractive index and loss functions, demonstrated Zn3V2O8 as an efficient photocatalytic compound. The optimum trend within finite temperature ranges utilizing quasi-harmonic technique is illustrated by calculating thermodynamic parameters. Theoretical investigations presented here will open up a new line of exploration of the photocatalytic characteristics of orthovanadates.
Collapse
Affiliation(s)
- Muhammad Awais Ali
- Department of Chemistry, Government College University Faisalabad Pakistan
| | - Maryam Noor Ul Ain
- Department of Chemistry, Government College University Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad Pakistan
| | - Sadia Asim
- Department of Chemistry, Government College Women University Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad Pakistan
| |
Collapse
|
2
|
Majnis MF, Mohd Adnan MA, Yeap SP, Muhd Julkapli N. How can heteroatoms boost the performance of photoactive nanomaterials for wastewater purification? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121808. [PMID: 39025012 DOI: 10.1016/j.jenvman.2024.121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/17/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Photocatalysis, as an alternative for treating persistent water pollutants, holds immense promise. However, limitations hinder sustained treatment and recycling under varying light conditions. This comprehensive review delves into the novel paradigm of metal and non-metal doping to overcome these challenges. It begins by discussing the fundamental principles of photocatalysis and its inherent limitations. Understanding these constraints is crucial for developing effective strategies. Band gap narrowing by metal and non-metal doping modifies the band gap, enabling visible-light absorption. Impurity energy levels and oxygen vacancies influenced the doping energy levels and surface defects. Interfacial electron transfer and charge carrier recombination are the most important factors that impact overall efficiency. The comparative analysis of nanomaterials are reviewed on various, including nanometal oxides, nanocarbon materials, and advanced two-dimensional structures. The synthesis process are narratively presented, emphasizing production yields, selectivity, and efficiency. The review has potential applications in the environment for efficient pollutant removal and water purification, economic cost-effective and scalable production and technological advancement catalyst design, in spite of its challenges in material stability, synthesis methods and optimizing band gaps. The novelty of the review paper is on the proposal of a new paradigm of heterojunctions of doped metal and non-metal photocatalysts to promise highly efficient water treatment. This review bridges the gap between fundamental research and practical applications, offering insights into tailored nano photocatalysts.
Collapse
Affiliation(s)
- Mohd Fadhil Majnis
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Mohd Azam Mohd Adnan
- Advanced Materials Research Group (AMRG) Department of Engineering, Faculty of Engineering & Life Sciences, Universiti Selangor, Bestari Jaya Campus, Jalan Timur Tambahan, 45600, Bestari Jaya, Selangor, Malaysia
| | - Swee Pin Yeap
- Department of Chemical Engineering UCSI University. UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Nurhidayatullaili Muhd Julkapli
- Nanotechnology and Catalysis Research Center (NANOCAT) Level 3, Block A, Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Halder P, Mondal I, Mukherjee A, Biswas S, Sau S, Mitra S, Paul BK, Mondal D, Chattopadhyay B, Das S. Te 4+ and Er 3+ doped ZrO 2 nanoparticles with enhanced photocatalytic, antibacterial activity and dielectric properties: A next generation of multifunctional material. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120985. [PMID: 38677226 DOI: 10.1016/j.jenvman.2024.120985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/03/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Amid rising water contamination from industrial sources, tackling toxic dyes and pathogens is critical. Photocatalysis offers a cost-effective and eco-friendly solution to this pressing challenges. Herein, we synthesized Te4+ and Er3+ doped ZrO2 photocatalysts through hydrothermal method and investigated their efficacy in degrading Congo red (CR) and pathogens under visible light. XRD and Raman Spectroscopy confirm monoclinic and tetragonal mixed-phases without any impurities. Doping-induced defects, reduced crystalline diameter, high surface area, modified bandgap (2.95 eV), photoluminescence quenching, coupled with interfacial polarization, contribute to EZO's excellent dielectric response (1.149 × 106), for achieving remarkable photocatalytic activity, verified by photoelectrochemical measurements, LC-MS and phytotoxicity analysis. Under optimal conditions, EZO achieves 99% CR degradation within 100 min (TOC 79.9%), surpassing ZO (77%) and TZO (84%). Catalyst dosages, dye concentrations, and solution pH effect on EZO's photocatalytic performance are systematically assessed. Scavenging experiment emphasized the pivotal role of · OH in CR degradation with 96.4% efficiency after 4 cycles, affirming its remarkable stability. Moreover, EZO demonstrates ROS-mediated antibacterial activity against E. faecalis and E. coli bacteria under visible light, achieving >97% and >94% inhibition rate with an inhibition zone > 3 mm. Hence, the nanoparticle's dual action offers a practical solution for treating contaminated wastewater, ensuring safe irrigation.
Collapse
Affiliation(s)
- Piyali Halder
- Department of Physics, Jadavpur University, Kolkata, 700032, India
| | - Indrajit Mondal
- Department of Physics, Jadavpur University, Kolkata, 700032, India
| | | | - Somen Biswas
- Department of Physics, Jadavpur University, Kolkata, 700032, India; Department of Physics, Bangabasi College, Kolkata, 700009, India
| | - Souvik Sau
- Department of Physics, Jadavpur University, Kolkata, 700032, India; Department of Physics, Bangabasi College, Kolkata, 700009, India
| | - Sucheta Mitra
- Department of Physics, Jadavpur University, Kolkata, 700032, India
| | | | - Dheeraj Mondal
- Department of Physics, Nabagram Hiralal Paul College, Hooghly, 712246, India
| | | | - Sukhen Das
- Department of Physics, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
4
|
Wang R, Reddy CV, Nagar A, Basu S, Shetti NP, Cheolho B, Shim J, Kakarla RR. 2D g-C 3N 4 nanosheets functionalized with nickel-doped ZrO 2 nanoparticles for synergistic photodegradation of toxic chemical pollutants. CHEMOSPHERE 2023; 341:139955. [PMID: 37652247 DOI: 10.1016/j.chemosphere.2023.139955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
The photocatalytic removal of toxic chemical pollutants from wastewater has garnered significant attention in recent times owing to its notable removal efficiency, cost-effectiveness, and eco-friendly characteristics. Nonetheless, this catalytic process necessitates augmented charge separation and distinctive interface properties to facilitate catalytic reactions for water treatment applications. Therefore, in the current study, novel g-C3N4/Ni-doped ZrO2 heterostructured hybrid catalysts have been synthesized via a hydrothermal approach. Microscopic studies reveal that ZrO2 nanospheres were distributed on the layered-like 2D structure of g-C3N4 nanosheets. Electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) characterizations were employed to investigate the impact of bandgap, electron-hole recombination, charge transfer, and interface properties on the catalytic performance of g-C3N4/ZrO2 hybrids. XRD analysis confirmed that the Ni-ions do not disturb the host lattice crystal structure and heterostructure development between g-C3N4 and doped ZrO2 sample. Structurally, Ni-doped nanoparticles were found to be equally superficially dispersed on g-C3N4 sheets. Optical analysis results suggest that the hybrid catalyst possesses a narrow bandgap of 2.56 eV. The synthesized photocatalyst degraded rhodamine B (RhB) and tetracycline (TC) with ∼92% and ∼89% degradation efficiency, respectively. Heterostructured hybrid catalysts showed superior degradation rate constants than other catalysts. This might be attributed to the sufficient separation of electron-hole due to the development of a heterojunction. The radical scavenging experiments suggested that O2●- and ●OH radicals contributed substantially to the dye elimination activity of the composite. Therefore, the synthesized novel nanohybrid catalysts in this study present an efficient and straightforward synthesis method for the efficient removal of toxins from wastewater under visible light irradiation.
Collapse
Affiliation(s)
- Rui Wang
- School of Mechanical Engineering, Yeungnam University, Gyeongsan buk-do, 38541, South Korea
| | - Ch Venkata Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan buk-do, 38541, South Korea.
| | - Aashna Nagar
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, India; Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, 147004, India
| | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India
| | - Bai Cheolho
- School of Mechanical Engineering, Yeungnam University, Gyeongsan buk-do, 38541, South Korea.
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan buk-do, 38541, South Korea.
| | - Raghava Reddy Kakarla
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Basha B, Manzoor A, Alrowaili ZA, Ihsan A, Shakir I, Al-Buriahi MS. Ba 2-xHo xSr 2-yNi yFe 12O 22 and its composite with MXene: synthesis, characterization and enhanced visible light mediated photocatalytic activity for colored dye and pesticide. RSC Adv 2023; 13:29944-29958. [PMID: 37842667 PMCID: PMC10571018 DOI: 10.1039/d3ra05993f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023] Open
Abstract
The rapid recombination of charges of photogenerated electrons and holes severely limits single semiconductor photocatalytic applications. In this study, a simple and facile sol-gel approach was used to synthesize Ba2-xHoxSr2-yNiyFe12O22 (x = 0, 0.1 and y = 0, 0.5). The composite of holmium-nickel doped barium-strontium ferrite with MXene (Ba1.9Ho0.1Sr1.5Ni0.5Fe12O22@MXene) was synthesized by ultrasonication method. These synthesized samples were subsequently used to photodegrade rhodamine B (RhB) and pendimethalin under visible light illumination. The results of the experiments demonstrated that MXene, as a cocatalyst, considerably reduces the rate of recombination of charges and broadens absorption of visible light by providing increased surface functional groups to improve the photocatalytic activity of synthesized samples. MXene is thermally stable, have high electrical conductivity, have adjustable bandgap, and hydrophilic in nature. The optimized Ba1.9Ho0.1Sr1.5Ni0.5Fe12O22@MXene composite demonstrated an excellent photocatalytic rate by degrading 78.88% RhB and 75.59% pendimethalin in 140 minutes. Moreover, the scavenging experiment revealed that photogenerated electrons and holes were the primary active species involved in RhB and pendimethalin photodegradation, respectively. Ba1.9Ho0.1Sr1.5Ni0.5Fe12O22@MXene showed increased photocatalytic behavior because it has increased surface area which decreases rate of recombination of electron and hole pair, hence photocatalytic activity increases. It is observed that Ba1.9Ho0.1Sr1.5Ni0.5Fe12O22@MXene has potential application in photocatalytic degradation of harmful pollutants.
Collapse
Affiliation(s)
- Beriham Basha
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Alina Manzoor
- Department of Physics, Government College University Faisalabad 38000 Punjab Pakistan
| | - Z A Alrowaili
- Department of Physics, College of Science, Jouf University P. O. Box 2014 Sakaka Saudia Arabia
| | - Ayesha Ihsan
- Institute of Chemistry, The Islamia University of Bahawalpur Baghdad-ul-Jadeed Campus Bahawalpur 63100 Pakistan
| | - Imran Shakir
- Department of Physics, Faculty of Science, Islamic University of Madinah Madinah 42351 Saudi Arabia
- Department of Materials Science and Engineering, University of California Los Angeles USA
| | - M S Al-Buriahi
- Department of Physics, Sakarya University Sakarya Turkey
| |
Collapse
|
6
|
Alajmi BM, Basaleh AS, Ismail AA, Mohamed RM. Bi2S3 incorporated mesoporous ZrO2 networks as an effective photocatalyst for photocatalytic oxidation of thiophene. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
7
|
Chen M, Chang X, Li C, Wang H, Jia L. Ni-Doped BiVO 4 photoanode for efficient photoelectrochemical water splitting. J Colloid Interface Sci 2023; 640:162-169. [PMID: 36848769 DOI: 10.1016/j.jcis.2023.02.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
BiVO4 (BVO) based photoanode is one of the most mega-potential materials for solar water splitting while suffers from poor charge transfer and separation efficiency limit its practical application. Herein, FeOOH/Ni-BiVO4 photoanode synthesized by the facile wet chemical method were investigated for improved charge transport and separation efficiency. The photoelectrochemical (PEC) measurements demonstrate that the water oxidation photocurrent density can reach as high as 3.02 mA cm-2 at 1.23 V vs RHE, and the surface separation efficiency can be boosted to 73.3 %, which increases around 4 times comparing with that of pure sample. Further depth studies showed that the Ni doping can effectively promote hole transport/trapping and introduce more active sites for the oxidation of water, while FeOOH co-catalyst could passivate the Ni-BiVO4 photoanode surface. This work provides a model for the design of BiVO4-based photoanodes with combined thermodynamic and kinetic advantages.
Collapse
Affiliation(s)
- Meihong Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Xiaobo Chang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Can Li
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Labortary of Graphene, Xi'an 710072, PR China.
| | - Lichao Jia
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
8
|
Photon driven nitrogen fixation via Ni-incorporated ZrO2/Bi2O3: p-n heterojunction. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
9
|
Reddy CV, Kakarla RR, Shim J, Aminabhavi TM. Synthesis of transition metal ions doped-ZrO 2 nanoparticles supported g-C 3N 4 hybrids for solar light-induced photocatalytic removal of methyl orange and tetracycline pollutants. CHEMOSPHERE 2022; 308:136414. [PMID: 36099985 DOI: 10.1016/j.chemosphere.2022.136414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Photodegradation is an eco-friendly degradation process routinely employed for the removal of various pollutants produced by pharmaceutical and textile industries. In this work, g-C3N4 sheets (g-CN) supported with Fe-doped ZrO2 nanoparticles have been prepared via a facile hydrothermal method as photocatalysts for the effective photodegradation of methyl orange (MO) and tetracycline (TC). The as-prepared photocatalysts were characterized by using a wide range of techniques to understand the origin of their superior photodegradation performance. Structurally, Fe-doped ZrO2 nanoparticles were found to be uniformly superficially distributed on g-C3N4. The addition of Fe-doped ZrO2 nanoparticles was also found to improve the surface area and light absorption capacity of pure g-CN. It was further revealed that the development of heterojunctions between g-C3N4 and Fe-doped ZrO2 nanoparticles effectively reduced the recombination rate of electron and hole pairs within the photocatalyst system, resulting in improved photocatalytic activity. Previous studies have pointed at the superoxide radical anions (˙O2-) and (OH·) as being primarily responsible for the degradation of MO and TC species, leading us to hypothesize that the g-FZ composite works via a possible free-radical based catalytic mechanism to support the photodegradation process.
Collapse
Affiliation(s)
- Ch Venkata Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712749, South Korea
| | - Raghava Reddy Kakarla
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia.
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712749, South Korea.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, 580031, Karnataka, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand, 248 007, India.
| |
Collapse
|
10
|
Liu Y, Liu X, Liu R, Chang S, Wu D. Effects of pH on the light-induced photoelectrochemical performances of NiO/ZrO2 nanoparticles. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Basaleh AS, Shawky A, Mahmoud MHH. CdO-supported ZrO 2heterojunctions: facile synthesis and rapid visible-light oxidation of atrazine herbicide with superb recyclability. NANOTECHNOLOGY 2022; 34:035701. [PMID: 36240728 DOI: 10.1088/1361-6528/ac9a57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The advancement in ceramic oxide-based photocatalysis has got much attention recently for environmental issues. Atrazine (AZ) is one of the major used herbicides in agricultural and related industries. This work familiarizes a polymeric-assisted sol-gel preparation of high surface area zirconium oxide (ZrO2) supported with cadmium oxide nanoparticles at minor content (0.5-2.0 wt%). Exploration of the synthesized heterostructures revealed the enhancement of visible-light absorbance and reduction of bandgap energy to 2.76 eV keeping the same crystalline form and high surface area of 170 m2g‒1. The prepared photocatalysts were used to degrade AZ in water at a concentration of 231.8μM (50 ppm). The 1.5%-introduced CdO to ZrO2revealed the best-performed photocatalyst for complete oxidation of AZ within 40 at an optimized dose of 1.6 g l-1. This novel ceramic photocatalyst showed a chemical and structural ability to keep 98.5% of its initial efficiency after five regenerated cycles. The construction of p-n heterojunction between the p-type ZrO2and the n-type CdO contributed to the comprehensive photocatalytic competence toward the efficient charge separation and photooxidation process.
Collapse
Affiliation(s)
- A S Basaleh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, 21589, Saudi Arabia
| | - Ahmed Shawky
- Nanomaterials and Nanotechnology Department, Advanced Materials Division, Central Metallurgical R&D Institute (CMRDI), PO Box 87, Helwan, 11421, Cairo, Egypt
| | - M H H Mahmoud
- Department of Chemistry, College of Science, Taif University, PO Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|
12
|
Bakhtiar A, Bouberka Z, Roussel P, Volkringer C, Addad A, Ouddane B, Pierlot C, Maschke U. Development of a TiO 2/Sepiolite Photocatalyst for the Degradation of a Persistent Organic Pollutant in Aqueous Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3313. [PMID: 36234441 PMCID: PMC9565577 DOI: 10.3390/nano12193313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
A clay-based TiO2 nanocomposite material was synthesized by a facile method, to investigate its structure and photocatalytic efficiency. The supported TiO2 nanoparticles were generated using a sol-gel method, and subsequently, mixed with a suspension of sepiolite. The material was recovered in powder form (Mc-80) and then calcined to properly arrange the crystal lattice of the TiO2 particles for use in heterogeneous photocatalysis (Mc-80-500). A powder X-ray diffractogram of Mc-80-500 revealed a dispersion of anatase and rutile phase TiO2 particles on the clay surface, exhibiting a size in the order of 4-8 nm. TEM images of Mc-80-500 confirmed the presence of isolated TiO2 beads on the surface of the fibrous sepiolite. The specific surface area of Mc-80-500 was larger than that of raw sepiolite and that of free TiO2 nanoparticles. Mc-80-500 was found to be more efficient in heterogeneous photocatalysis compared to other TiO2 materials based on sepiolite. Total depollution of a reactive dye (Orange G) was achieved after 1 h irradiation time, which is relatively quick compared to previous reports. The photocatalyst material can be washed with distilled water without chemical additives or calcination, and can be reused several times for photocatalysis, without loss of efficiency.
Collapse
Affiliation(s)
- Amina Bakhtiar
- Unité Matériaux et Transformations (UMET), UMR 8207, Université de Lille, CNRS, INRAE, Centrale Lille, F-59000 Lille, France
- Laboratoire Physico-Chimie des Matériaux-Catalyse et Environnement (LPCMCE), Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf (USTOMB), BP 1505, El M’naouer, Oran 31000, Algeria
| | - Zohra Bouberka
- Laboratoire Physico-Chimie des Matériaux-Catalyse et Environnement (LPCMCE), Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf (USTOMB), BP 1505, El M’naouer, Oran 31000, Algeria
| | - Pascal Roussel
- Unité de Catalyse et Chimie du Solide (UCCS), UMR 8181, Université de Lille, CNRS, Centrale Lille, F-59000 Lille, France
| | - Christophe Volkringer
- Unité de Catalyse et Chimie du Solide (UCCS), UMR 8181, Université de Lille, CNRS, Centrale Lille, F-59000 Lille, France
| | - Ahmed Addad
- Unité Matériaux et Transformations (UMET), UMR 8207, Université de Lille, CNRS, INRAE, Centrale Lille, F-59000 Lille, France
| | - Baghdad Ouddane
- Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), UMR 8516, Université de Lille, F-59650 Villeneuve d’Ascq, France
| | - Christel Pierlot
- Unité de Catalyse et Chimie du Solide (UCCS), UMR 8181, Université de Lille, CNRS, Centrale Lille, F-59000 Lille, France
| | - Ulrich Maschke
- Unité Matériaux et Transformations (UMET), UMR 8207, Université de Lille, CNRS, INRAE, Centrale Lille, F-59000 Lille, France
| |
Collapse
|
13
|
Ultrasonic-assisted synthesis Zn0.78Cd0.22S/Bi2MoO6 heterojunction to improve photocatalytic performance for hexavalent chromium removal and hydrogen peroxide production. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Current Trends in the Utilization of Photolysis and Photocatalysis Treatment Processes for the Remediation of Dye Wastewater: A Short Review. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6040058] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Development in the textile industry leads to an increased demand for the use of various dyes. Moreover, there is the use of some dyes in the food industry as well as medical diagnostics. Thereby, increased demand for dyes in various fields has resulted in dye-containing wastewater. Only a small portion of the generated wastewater is adequately treated. The rest is usually dumped or otherwise directly discharged into the sewage system, which ultimately enters rivers, lakes, and streams. The handling and disposal of such concentrated wastewater, especially the dye-containing wastewater, is considered to be a major environmental issue from the moment of its generation to its ultimate disposal. Conventional water treatment methods such as flotation, filtration, adsorption, etc., are non-destructive physical separation processes. They only transfer the pollutants to other phases, thereby generating concentrated deposits. The advanced oxidation process (AOP) is one of the most effective emerging methods for the treatment of wastewater containing chemical pollutants. The method involves the formation and interaction of highly reactive hydroxyl radicals under suitable activation conditions. These radicals are non-selective and efficient for the destruction and eventual mineralization of recalcitrant organic pollutants. This review aims at the pros and cons of using photocatalysis as an efficient AOP to degrade dye-containing wastewater.
Collapse
|
15
|
Reddy CV, Koutavarapu R, Shim J, Cheolho B, Reddy KR. Novel g-C 3N 4/Cu-doped ZrO 2 hybrid heterostructures for efficient photocatalytic Cr(VI) photoreduction and electrochemical energy storage applications. CHEMOSPHERE 2022; 295:133851. [PMID: 35124089 DOI: 10.1016/j.chemosphere.2022.133851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Pure ZrO2, graphitic carbon nitride, Cu-doped ZrO2 nanoparticles (Cu-Zr), and doped Cu-Zr nanoparticles decorated on the g-C3N4 surface (g-CuZr nanohybrids) were successfully prepared by a hydrothermal technique. Synthesized catalysts were examined by XRD, FE-SEM, TEM, UV-Vis spectroscopy, photoluminescence (PL), and BET surface measurements, respectively. The photocatalytic reduction of Cr(VI) photoreduction as well as energy storage supercapacitor applications were thoroughly investigated. The g-CuZr hybrid photocatalyst outperformed other pristine photocatalysts in terms of light absorption and catalytic Cr(VI) reduction performance under stimulated solar light irradiation. Furthermore, methylene blue (MB) was used as a photosensitizer to further improve the Cr(VI) photoreduction performance. In precise, the heterostructured hybrid catalyst exhibited improved photocatalytic Cr(VI) photoreduction activity (∼88.1%) in 5 mg/L MB solution over other catalysts. Moreover, the decoration of Cu-Zr on the surface of g-C3N4 enhanced the absorption ability of light and catalytic Cr(VI) photoreduction performance. The PL, EIS, and transient photocurrent analysis demonstrated that the efficiency of the charge carrier's separation in the nanohybrid catalyst was superior over other catalysts. Furthermore, heterostructured g-CuZr nanohybrid electrode exhibited superior specific capacitance (297.2 F/g) over other electrodes, which are 5.5 folds (54.01 F/g), ∼2 folds (144.01 F/g) better than pure ZrO2 and g-C3N4 electrodes. Likewise, the nanohybrid electrode retained about 90% of the capacitive value after 2500 cycles over its initial capacitance.
Collapse
Affiliation(s)
- Ch Venkata Reddy
- School of Engineering, Yeungnam University, Gyeongsan, 712749, South Korea
| | - R Koutavarapu
- Department of Robotics and Intelligent Machine Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Jaesool Shim
- School of Engineering, Yeungnam University, Gyeongsan, 712749, South Korea.
| | - Bai Cheolho
- School of Engineering, Yeungnam University, Gyeongsan, 712749, South Korea.
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
16
|
Chen W, Liu S, Fu Y, Yan H, Qin L, Lai C, Zhang C, Ye H, Chen W, Qin F, Xu F, Huo X, Qin H. Recent advances in photoelectrocatalysis for environmental applications: Sensing, pollutants removal and microbial inactivation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214341] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
King A, Singh R, Nayak BB. Phase and photoluminescence analysis of dual-color emissive Eu3+-doped ZrO2 nanoparticles for advanced security features in anti-counterfeiting. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Organic-inorganic hybrid hydroquinone bridged V-CdS/HAP/Pd-TCPP: A novel visible light active photocatalyst for phenol degradation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Enhanced photoelectrocatalytic degradation of tetracycline using a bifacial electrode of nickel-polyethylene glycol-PbO2//Ti//TiO2-Ag2O. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Synergistic Catalytic Effect of Thermite Nanoparticles on HMX Thermal Decomposition. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01916-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Angural S, Bala I, Kumar A, Kumar D, Jassal S, Gupta N. Bleach enhancement of mixed wood pulp by mixture of thermo-alkali-stable xylanase and mannanase derived through co-culturing of Alkalophilic Bacillus sp. NG-27 and Bacillus nealsonii PN-11. Heliyon 2021; 7:e05673. [PMID: 33553710 PMCID: PMC7855340 DOI: 10.1016/j.heliyon.2020.e05673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 04/23/2020] [Accepted: 12/03/2020] [Indexed: 02/01/2023] Open
Abstract
The Application of a combination of enzymes is the best alternative to reduce the use of chemicals in the paper industry. Bacillus sp. NG-27 and Bacillus nealsonii PN-11 are known to produce thermoalkali stable xylanse (X) and mannanase (M) respectively having potential for pulp biobleaching. The Present study, reports the production of a mixture of X + M by co-culturing of strains in SSF and standardizing its application for pulp biobleaching. Production of enzymes by co-cultivation in SSF was optimized by statistical methods. Substantial increase in the yield of enzymes; 3.61 fold of xylanase and 37.71 fold of mannanase was achieved. Application of enzyme cocktail for pulp biobleaching resulted in a 45.64% reduction of kappa number with 55 IU g-1odp of enzyme dose (xylanase:mannanase; 3:1) at pH 8.0 in 1h at 65 °C along with significant increase in brightness (11%) and whiteness (75%). The Same quality of paper as made up from chemical treated pulp can be made from enzyme-treated pulp with 30% less use of chlorine. Structural analysis of enzyme-treated pulp showed dissolution of hemicellulose as indicated by pores, cracks and increased roughness all over the surface. Cocktail of X + M produced economically in a single fermentation having all the requisite characteristics for pulp biobleaching is a highly suitable candidate for application in the pulp and paper industry.
Collapse
Affiliation(s)
- Steffy Angural
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Indu Bala
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Aditya Kumar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Deepak Kumar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sunena Jassal
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
22
|
Synthesis of SiO2/CoFe2O4 Nanoparticles Doped CMC: Exploring the Morphology and Optical Characteristics for Photodegradation of Organic Dyes. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01846-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Zhu C, Ding Z, Guo Z, Guo X, Yang A, Li Z, Jiang BP, Shen XC. Full-spectrum responsive ZrO2-based phototheranostic agent for NIR-II photoacoustic imaging-guided cancer phototherapy. Biomater Sci 2020; 8:6515-6525. [DOI: 10.1039/d0bm01482f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A second near-infrared window (NIR-II) responsive, cancer targeting ZrO2-based phototheranostic agent has been fabricated for imaging-guided precise synergetic phototherapy.
Collapse
Affiliation(s)
- Chengyuan Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Zhaoyang Ding
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Zhengxi Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Xiaolu Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Aijia Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Zhilang Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| |
Collapse
|