1
|
Kao JC, Teng TY, Lin HW, Tseng FG, Ting LY, Bhalothia D, Chou HH, Lo YC, Chou JP, Chen TY. Single Atom Ag Bonding Between PF3T Nanocluster and TiO 2 Leads the Ultra-Stable Visible-Light-Driven Photocatalytic H 2 Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403176. [PMID: 38949041 DOI: 10.1002/smll.202403176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Atomic Ag cluster bonding is employed to reinforce the interface between PF3T nano-cluster and TiO2 nanoparticle. With an optimized Ag loading (Ag/TiO2 = 0.5 wt%), the Ag atoms will uniformly disperse on TiO2 thus generating a high density of intermediate states in the band gap to form the electron channel between the terthiophene group of PF3T and the TiO2 in the hybrid composite (denoted as T@Ag05-P). The former expands the photon absorption band width and the latter facilitates the core-hole splitting by injecting the photon excited electron (from the excitons in PF3T) into the conduction band (CB) of TiO2. These characteristics enable the high efficiency of H2 production to 16 580 µmol h-1 g-1 and photocatalysis stability without degradation under visible light exposure for 96 h. Compared to that of hybrid material without Ag bonding (TiO2@PF3T), the H2 production yield and stability are improved by 4.1 and 18.2-fold which shows the best performance among existing materials in similar component combination and interfacial reinforcement. The unique bonding method offers a new prospect to accelerate the development of photocatalytic hydrogen production technologies.
Collapse
Affiliation(s)
- Jui-Cheng Kao
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Ting-Yu Teng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hao-Wu Lin
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Li-Yu Ting
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Dinesh Bhalothia
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chieh Lo
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jyh-Pin Chou
- Department of Physics, National Changhua University of Education, Changhua, 50007, Taiwan
| | - Tsan-Yao Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
2
|
Zhang J, Fu X, Guo Y, Wang R, Huo J, Huang X, Zhang X. CAZ Composite Photocatalysts for H 2 Production and Degradation under Visible Light. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12512-12525. [PMID: 38833532 DOI: 10.1021/acs.langmuir.4c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
g-C3N4/Ag-ZnO (CAZ) composite photocatalysts were synthesized successfully by the hydrothermal method. The photocatalytic performance of photocatalysts was assessed through experiments measuring both hydrogen (H2) production and the degradation of methylene blue (MB). The H2 production rate of 60% CAZ reached 2.450 mmol·g-1·h-1, which was 8.5 times that of g-C3N4. 25% CAZ degraded 99.14% of MB dye within 40 min, and its degradation rate constant was 12.4 times that of g-C3N4. CAZ composite photocatalysts have good synergistic properties in degradation and hydrogen production and exhibit better photocatalytic performance. A Z-scheme photocatalytic system mechanism of CAZ has been proposed for the enhanced H2 production and photocatalytic degradation rate.
Collapse
Affiliation(s)
- Jinfeng Zhang
- School of Sciences, Henan University of Technology, Zhengzhou, Henan450000, China
| | - Xiaonan Fu
- School of Sciences, Henan University of Technology, Zhengzhou, Henan450000, China
| | - Yefei Guo
- Department of Physics, Shanghai University Shanghai 201900, China
| | - Rui Wang
- School of Sciences, Henan University of Technology, Zhengzhou, Henan450000, China
| | - Jingyin Huo
- School of Sciences, Henan University of Technology, Zhengzhou, Henan450000, China
| | - Xiaoqiang Huang
- School of Sciences, Henan University of Technology, Zhengzhou, Henan450000, China
| | - Xiaoping Zhang
- School of Sciences, Henan University of Technology, Zhengzhou, Henan450000, China
| |
Collapse
|
3
|
John KI, Ho G, Li D. Recent progresses in synthesis and modification of g-C 3N 4 for improving visible-light-driven photocatalytic degradation of antibiotics. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3047-3078. [PMID: 38877630 DOI: 10.2166/wst.2024.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/11/2024] [Indexed: 06/16/2024]
Abstract
Graphitic carbon nitride (g-C3N4) is a widely studied visible-light-active photocatalyst for low cost, non-toxicity, and facile synthesis. Nonetheless, its photocatalytic efficiency is below par, due to fast recombination of charge carriers, low surface area, and insufficient visible light absorption. Thus, the research on the modification of g-C3N4 targeting at enhanced photocatalytic performance has attracted extensive interest. A considerable amount of review articles have been published on the modification of g-C3N4 for applications. However, limited effort has been specially contributed to providing an overview and comparison on available modification strategies for improved photocatalytic activity of g-C3N4-based catalysts in antibiotics removal. There has been no attempt on the comparison of photocatalytic performances in antibiotics removal between modified g-C3N4 and other known catalysts. To address these, our study reviewed strategies that have been reported to modify g-C3N4, including metal/non-metal doping, defect tuning, structural engineering, heterostructure formation, etc. as well as compared their performances for antibiotics removal. The heterostructure formation was the most widely studied and promising route to modify g-C3N4 with superior activity. As compared to other known photocatalysts, the heterojunction g-C3N4 showed competitive performances in degradation of selected antibiotics. Related mechanisms were discussed, and finally, we revealed current challenges in practical application.
Collapse
Affiliation(s)
- Kingsley Igenepo John
- College of Science, Technology, Engineering & Mathematics, Murdoch University, Murdoch, WA 6150, Australia
| | - Goen Ho
- College of Science, Technology, Engineering & Mathematics, Murdoch University, Murdoch, WA 6150, Australia
| | - Dan Li
- College of Science, Technology, Engineering & Mathematics, Murdoch University, Murdoch, WA 6150, Australia E-mail:
| |
Collapse
|
4
|
Rasool Z, Athar MS, Muneer M. Construction of flake ball-shaped Bi 2WO 6 embedded on phenyl functionalized g-C 3N 4 nanosheet for efficient degradation insight of colorless pollutants and its biological application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31259-31272. [PMID: 38630405 DOI: 10.1007/s11356-024-33294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/08/2024] [Indexed: 10/27/2024]
Abstract
A facile solvent-free solid-state method was adapted to synthesize the spherical-shaped Bi2WO6 engraved on phenyl-doped g-C3N4 nanosheet, i.e., Bi2WO6/Ph-gC3N4 (or BPCN) composites with varying weights of Bi2WO6. Several spectral analyses were used to characterize all the synthesized nanomaterials. The synthesized photocatalyst showed good absorption under visible light as confirmed by UV-visible DRS analysis. Morphological analyses like SEM and TEM determine the successful fabrication of binary heterocomposite. Further, the elements available in the fabricated binary nanocomposite were confirmed by XPS. The photocatalyst was used for the aerobic photocatalytic degradation of a few colorless pollutants like bisphenol A (BPA, 30 mg L-1), a microplastic constituent, and tetracycline (TC, 40 mg L-1), an antibiotic derivative to achieve the impressive results. The less intense PL signal obtained for the 20BPCN heterocomposite reveals the remarkable enhancement in e--h+ pair separation and recombination rate. The quenching study, alkaline terephthalic acid photoluminescence test (TA-PL), and NBT phototransformation study explain the formation of reactive species involved in the decomposition process. An oral cancer cell line (A-254) was tested for the anticancer activity analysis of the 20BPCN photocatalyst. Based on the obtained results, a Z-scheme electron transfer mechanism has been proposed for the photodegradation of model compounds.
Collapse
Affiliation(s)
- Ziyaur Rasool
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | | | - Mohammad Muneer
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
5
|
Liu X, Zhou Y, Sun S, Bao S. Study on the behavior and mechanism of NiFe-LDHs used for the degradation of tetracycline in the photo-Fenton process. RSC Adv 2023; 13:31528-31540. [PMID: 37908668 PMCID: PMC10614753 DOI: 10.1039/d3ra05475f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023] Open
Abstract
An environment-friendly 3D NiFe-LDHs photocatalyst was fabricated via a simple hydrothermal method and characterized by means of SEM, XRD, BET, XPS and FT-IR. It is a highly efficient heterogeneous photo-Fenton catalyst for the degradation of TC-HCl under visible light irradiation. After exploring the effects of catalyst dosage, initial concentration of TC-HCl, solution pH and H2O2 concentrations, the optimal reaction conditions were determined. The experiment results showed that the degradation efficiency can reach 99.11% through adding H2O2 to constitute a photo-Fenton system after adsorption for 30 min and visible light for 60 min. After four cycles, the degradation rate decay is controlled within 21.2%, indicating that NiFe-LDHs have excellent reusable performance. The experimental results of environmental factors indicate that Fe2+ and Ca2+ promoted the degradation of TC-HCl, both Cl- and CO32- inhibited the degradation of TC-HCl. Two other antibiotics (OTC and FT) were selected for research and found to be effectively removed in this system, achieving effective degradation of a variety of typical new pollutants. The radical trapping tests and ESR detection showed that ·OH and ·O2- were the main active substances for TC degradation in the photo-Fenton system. By further measuring the intermediate products of photodegradation, the degradation pathway of TC-HCl was inferred. The toxicity analysis demonstrated that the overall toxicity of the identified intermediates was reduced in this system. This study provides a theoretical and practical basis for the removal of TC in aquatic environments.
Collapse
Affiliation(s)
- Xia Liu
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| | - Yuting Zhou
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| | - Shuanghui Sun
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| | - Siqi Bao
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| |
Collapse
|
6
|
Kao JC, Bhalothia D, Wang ZX, Lin HW, Tseng FG, Ting LY, Chou HH, Lo YC, Chou JP, Chen TY. Electron Injection via Interfacial Atomic Au Clusters Substantially Enhance the Visible-Light-Driven Photocatalytic H 2 Production of the PF3T Enclosed TiO 2 Nanocomposite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303391. [PMID: 37267938 DOI: 10.1002/smll.202303391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 06/04/2023]
Abstract
A hybrid composite of organic-inorganic semiconductor nanomaterials with atomic Au clusters at the interface decoration (denoted as PF3T@Au-TiO2 ) is developed for visible-light-driven H2 production via direct water splitting. With a strong electron coupling between the terthiophene groups, Au atoms and the oxygen atoms at the heterogeneous interface, significant electron injection from the PF3T to TiO2 occurs leading to a quantum leap in the H2 production yield (18 578 µmol g-1 h-1 ) by ≈39% as compared to that of the composite without Au decoration (PF3T@TiO2 , 11 321 µmol g-1 h-1 ). Compared to the pure PF3T, such a result is 43-fold improved and is the best performance among all the existing hybrid materials in similar configurations. With robust process control via industrially applicable methods, it is anticipated that the findings and proposed methodologies can accelerate the development of high-performance eco-friendly photocatalytic hydrogen production technologies.
Collapse
Affiliation(s)
- Jui-Cheng Kao
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Dinesh Bhalothia
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Zan-Xiang Wang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hao-Wu Lin
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Li-Yu Ting
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chieh Lo
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jyh-Pin Chou
- Department of Physics, National Changhua University of Education, Changhua, 50007, Taiwan
| | - Tsan-Yao Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Centre, National Cheng Kung University, Tainan, 70101, Taiwan
| |
Collapse
|
7
|
Tamtam MR, Koutavarapu R, Shim J. InVO 4 nanosheets decorated with ZnWO 4 nanorods: A novel composite and its enhanced photocatalytic performance under solar light. ENVIRONMENTAL RESEARCH 2023; 227:115735. [PMID: 37001849 DOI: 10.1016/j.envres.2023.115735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 05/08/2023]
Abstract
InVO4 is the most attractive inorganic new-generation material for advanced scientific research, especially in the fields of energy and environmental science. In theory, this stable, non-toxic, energy-efficient metal vanadate semiconductor is expected to exhibit significant catalytic activity owing to its narrow bandgap energy. However, this has not been achieved in practice because of its inherent defects in terms of the separation and migration of charge carriers. In fact, the exploration of this material is still in its infancy, and more research is needed to improve its efficiency and speed up its commercialization. Band gap engineering using heterojunction formation offers better results than other methods, such as morphological variations and doping efforts. In this context, the present study offers a significant solution substantiated by experimental results. This includes the successful synthesis of a novel nanocomposite of InVO4 nanosheets decorated with ZnWO4 nanorods with a unique improved light absorption ability. Three composites with 26.48-33.85 nm crystal sizes and 11.74-19.98 m2/g surface area were prepared with tailor-made bandgap energies in the range of 2.52-2.97 eV. Furthermore, they produced high photoexcitation currents with low EIS resistance with respect to their constituents. The as-prepared InVO4-based novel catalyst almost completely (98.33%) decomposed tetracycline (TC) antibiotic in just 90 min, proving its high efficacy. The enhanced performance of the novel catalyst is 7.6 times that of InVO4 and 10 times that of ZnWO4. Moreover, the catalyst intake was significantly small (15 mg/100 mL TC solution).
Collapse
Affiliation(s)
- Mohan Rao Tamtam
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Ravindranadh Koutavarapu
- Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
8
|
Recent Advances in g-C 3N 4-Based Materials and Their Application in Energy and Environmental Sustainability. Molecules 2023; 28:molecules28010432. [PMID: 36615622 PMCID: PMC9823828 DOI: 10.3390/molecules28010432] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 01/05/2023] Open
Abstract
Graphitic carbon nitride (g-C3N4), with facile synthesis, unique structure, high stability, and low cost, has been the hotspot in the field of photocatalysis. However, the photocatalytic performance of g-C3N4 is still unsatisfactory due to insufficient capture of visible light, low surface area, poor electronic conductivity, and fast recombination of photogenerated electron-hole pairs. Thus, different modification strategies have been developed to improve its performance. In this review, the properties and preparation methods of g-C3N4 are systematically introduced, and various modification approaches, including morphology control, elemental doping, heterojunction construction, and modification with nanomaterials, are discussed. Moreover, photocatalytic applications in energy and environmental sustainability are summarized, such as hydrogen generation, CO2 reduction, and degradation of contaminants in recent years. Finally, concluding remarks and perspectives on the challenges, and suggestions for exploiting g-C3N4-based photocatalysts are presented. This review will deepen the understanding of the state of the art of g-C3N4, including the fabrication, modification, and application in energy and environmental sustainability.
Collapse
|
9
|
Huang H, Lei Y, Bai L, Liang Y, Yang H. Morphology-dependent quasi 2D/2D point-flat-plate ternary CdS/MoS2/WS2 heterojunction with improved visible photocatalytic degradation of tetracycline. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Construction of Highly Active Zn3In2S6 (110)/g-C3N4 System by Low Temperature Solvothermal for Efficient Degradation of Tetracycline under Visible Light. Int J Mol Sci 2022; 23:ijms232113221. [DOI: 10.3390/ijms232113221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Herein, Zn3In2S6 photocatalyst with (110) exposed facet was prepared by low temperature solvothermal method. On this basis, a highly efficient binary Zn3In2S6/g-C3N4 was obtained by low temperature solvothermal method and applied to the degradation of tetracycline (TC). The samples of the preparation were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, UV–vis diffuse reflection spectroscopy, and photoluminescence spectroscopy. Furthermore, the degradation performance of photocatalysts on TC was investigated under different experimental conditions. Finally, the mechanism of Zn3In2S6/g-C3N4 composite material degrading TC is discussed. The results show that Zn3In2S6 and Zn3In2S6/g-C3N4 photocatalysts with excellent performance could be successfully prepared at lower temperature. The Zn3In2S6/g-C3N4 heterojunction photocatalyst could significantly improve the photocatalytic activity compared with g-C3N4. After 150 min of illumination, the efficiency of 80%Zn3In2S6/g-C3N4 to degrade TC was 1.35 times that of g-C3N4. The improvement of photocatalytic activity was due to the formation of Zn3In2S6/g-C3N4 heterojunction, which promoted the transfer of photogenerated electron–holes. The cycle experiment test confirmed that Zn3In2S6/g-C3N4 composite material had excellent stability. The free radical capture experiment showed that ·O2− was the primary active material. This study provides a new strategy for the preparation of photocatalysts with excellent performance at low temperature.
Collapse
|
11
|
Han Z, Zhang X, Zuo Y, Dong H, Ren H. Decorating 2D Ti3C2 on flower-like hierarchical Bi2WO6 for the 2D/2D heterojunction construction towards photodegradation of tetracycline antibiotics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Guo J, Gan W, Ding C, Lu Y, Li J, Qi S, Zhang M, Sun Z. Black phosphorus quantum dots and Ag nanoparticles co-modified TiO2 nanorod arrays as powerful photocatalyst for tetracycline hydrochloride degradation: Pathways, toxicity assessment, and mechanism insight. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Liu K, Chen J, Sun F, Liu Y, Tang M, Yang Y. Historical development and prospect of intimately coupling photocatalysis and biological technology for pollutant treatment in sewage: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155482. [PMID: 35483466 DOI: 10.1016/j.scitotenv.2022.155482] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Through the synergistic effect of photocatalysis and biodegradation, intimately coupling photocatalysis and biological (ICPB) technology could improve the removal rate and mineralization rate of refractory pollutants and reduce the toxicity of intermediate products. ICPB system was characterized with the advantages of simple operation, low energy consumption and high treatment efficiency. As a new sewage treatment technology, ICPB system has shown great potential in the treatment of refractory pollutants, and has been widely concerned. In this study, the research progress of photocatalyst, carrier and biofilm in ICPB system were discussed, and the degradation mechanism was introduced. The shortcomings of the current ICPB system were pointed out, and the possible research directions of ICPB in the future were proposed. This review aimed to deepen the understanding of ICPB technology and promoted the further development of ICPB technology in the treatment of refractory pollutants.
Collapse
Affiliation(s)
- Kai Liu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China.
| | - Fengfei Sun
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Meizhen Tang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yuewei Yang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
14
|
Exploiting the potential of silver oxo-salts with graphitic carbon nitride/fibrous silica-titania in designing a new dual Z-scheme photocatalyst for photodegradation of 2-chlorophenol. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Liu Y, Zeng X, Han J, Tian Z, Yu F, Wang W. Preparation of miscible CdS and homojunction C 3N 4 hybrids for efficient photocatalytic degradation of tetracycline. NEW J CHEM 2022. [DOI: 10.1039/d2nj01854c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparation of high-performance photocatalysts for the degradation of organic pollutants by a simple method.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Xianpeng Zeng
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Jun Han
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Zongju Tian
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Feifan Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Wei Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- Carbon Neutralization and Environmental Catalytic Technology Laboratory, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
16
|
Ahmad F, Zhu D, Sun J. Environmental fate of tetracycline antibiotics: degradation pathway mechanisms, challenges, and perspectives. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:64. [DOI: 10.1186/s12302-021-00505-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 07/23/2024]
Abstract
AbstractTetracycline pollution is a growing global threat to aquatic and terrestrial biodiversity due to its unprecedented use in aquaculture, livestock, and human disease prevention. The influx of tetracycline may annihilate the microbial ecology structure in the environment and pose a severe threat to humans by disturbing the food chain. Although significant research data are available in the literature on various aspects of tetracycline, including detection techniques, degradation mechanisms, degradation products, and policy statements to curtail the issue, there is a scarcity of a report to compile the recent data in the literature for better analysis and comparison by the policymakers. To achieve this paucity in knowledge, the current study aims at collecting data on the available degradation strategies, mechanisms involved in biodegradable and non-biodegradable routes, the main factor affecting degradation strategies, compile novel detection techniques of tetracycline antibiotics in the environment, discuss antibiotic resistance genes and their potential role in degradation. Finally, limitations in the current bioremediation techniques and the future prospects are discussed with pointers for the decision-makers for a safer environment.
Collapse
|
17
|
Ding Z, Sun M, Liu W, Sun W, Meng X, Zheng Y. Ultrasonically synthesized N-TiO2/Ti3C2 composites: Enhancing sonophotocatalytic activity for pollutant degradation and nitrogen fixation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119287] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
He X, Kai T, Ding P. Heterojunction photocatalysts for degradation of the tetracycline antibiotic: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:4563-4601. [PMID: 34483792 PMCID: PMC8403697 DOI: 10.1007/s10311-021-01295-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/28/2021] [Indexed: 05/20/2023]
Abstract
Antibiotic pollution is a major health issue inducing antibiotic resistance and the inefficiency of actual drugs, thus calling for improved methods to clean water and wastewater. Here we review the recent development of heterojunction photocatalysis and application in degrading tetracycline. We discuss mechanisms for separating photogenerated electron-hole pairs in different heterojunction systems such as traditional, p-n, direct Z-scheme, step-scheme, Schottky, and surface heterojunction. Degradation pathways of tetracycline during photocatalysis are presented. We compare the efficiency of tetracycline removal by various heterojunctions using quantum efficiency, space time yield, and figures of merit. Implications for the treatment of antibiotic-contaminated wastewater are discussed.
Collapse
Affiliation(s)
- Xinghou He
- Central South University Xiangya School of Public Health, Changsha, 410078 Hunan China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, 410078 Hunan China
| | - Tianhan Kai
- Central South University Xiangya School of Public Health, Changsha, 410078 Hunan China
| | - Ping Ding
- Central South University Xiangya School of Public Health, Changsha, 410078 Hunan China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, 410078 Hunan China
| |
Collapse
|
19
|
Rafat MN, Lim CS, Cho KY, Jung CH, Oh WC. 3D ternary LaCdSe-GO-TiO2 nanocomposite synthesized with high powersonic method and sonophotocatalytic efficiency for hydrogen evolution with different scavengers. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04479-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Yu C, Zhang Z, Dong Z, Xiong Y, Wang Y, Liu Y, Cao X, Dong W, Liu M, Liu Y. Fabrication of heterostructured CdS/TiO2 nanotube arrays composites for photoreduction of U(VI) under visible light. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|