1
|
Yang M, Zhu JJ, McGaughey AL, Priestley RD, Hoek EMV, Jassby D, Ren ZJ. Machine Learning for Polymer Design to Enhance Pervaporation-Based Organic Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10128-10139. [PMID: 38743597 DOI: 10.1021/acs.est.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Pervaporation (PV) is an effective membrane separation process for organic dehydration, recovery, and upgrading. However, it is crucial to improve membrane materials beyond the current permeability-selectivity trade-off. In this research, we introduce machine learning (ML) models to identify high-potential polymers, greatly improving the efficiency and reducing cost compared to conventional trial-and-error approach. We utilized the largest PV data set to date and incorporated polymer fingerprints and features, including membrane structure, operating conditions, and solute properties. Dimensionality reduction, missing data treatment, seed randomness, and data leakage management were employed to ensure model robustness. The optimized LightGBM models achieved RMSE of 0.447 and 0.360 for separation factor and total flux, respectively (logarithmic scale). Screening approximately 1 million hypothetical polymers with ML models resulted in identifying polymers with a predicted permeation separation index >30 and synthetic accessibility score <3.7 for acetic acid extraction. This study demonstrates the promise of ML to accelerate tailored membrane designs.
Collapse
Affiliation(s)
- Meiqi Yang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Jun-Jie Zhu
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Allyson L McGaughey
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Eric M V Hoek
- Department of Civil & Environmental Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - David Jassby
- Department of Civil & Environmental Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Wang X, Guo Y, Li Y, Ma Z, Li Q, Wang Q, Xu D, Gao J, Gao X, Sun H. Molecular level unveils anion exchange membrane fouling induced by natural organic matter via XDLVO and molecular simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170272. [PMID: 38266735 DOI: 10.1016/j.scitotenv.2024.170272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Membrane fouling, critically determined by the interplay of interfacial interaction between foulant and membrane, is a critical impediment that limits application extension of electrodialysis (ED) process. In this study, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model and molecular simulation were performed to quantify the interaction energy barrier for revealing anion exchange membranes (AEMs) fouling mechanisms of calcium ions coexisted with natural organic matter (NOM) (sodium alginate, humic acid, and bovine serum albumin). The insight gained from DMol3 module was also utilized to interpret the adhesion process of NOM at the molecular level. The interaction energy suggested that the presence of Ca-NOM complex magnify the adhesion on the surface cavities of AEMs structures. The molecular simulation and XDLVO presented a good agreement in predicting the fouling trajectory based on the experimental findings. The short-path acid-base interaction exerted a predominant influence on exploring the fouling formation process. In addition, the sodium alginate displayed more stable adhesion behavior through calcium ions bridges stimuli than humic acid and bovine serum albumin. In particular, the molecular simulation calculations exhibited a superior level of concurrence with colloid growth of membrane fouling. Combined XDLVO theory with DMol3 model proposed a new approach to understand membrane fouling mechanisms in ED process.
Collapse
Affiliation(s)
- Xiaomeng Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Yanyan Guo
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Yuanxin Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Zhun Ma
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China.
| | - Qing Li
- College of Chemistry and Chemical Engineering, De Zhou University, De Zhou 253023, Shandong, China
| | - Qun Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Dongmei Xu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China.
| | - Jun Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Xueli Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Hui Sun
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
3
|
Zhang M, Xu Q, Liu C, An X, Zhang Z, Du X, Li P, Wu J, Hao X. Application of a biodegradable poly(butylene adipate- co-terephthalate) membrane for phenol pervaporation recovery. Phys Chem Chem Phys 2023. [PMID: 37366159 DOI: 10.1039/d3cp01783d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In the field of membrane separation, the environmental concerns caused by spent membranes are becoming increasingly serious, which contradicts the concept of sustainable development. Based on this, a biodegradable poly(butylene adipate-co-terephthalate) (PBAT) membrane was used for the first time in the pervaporation separation of phenol, a high boiling point organic compound (HBOC). By using the PBAT membrane, outstanding separation efficiency was achieved, and environmental pollution and disposal issues were also avoided. The separation process and mechanism of the PBAT membrane were systematically studied through the experiment together with molecular dynamics (MD) simulation. The swelling experiment and intermolecular interaction energy calculation demonstrated that the PBAT membrane had a strong affinity for phenol. Further simulation concluded that higher phenol concentration increased the number of hydrogen bonds so that the membrane was more greatly swollen. Meanwhile, the simulations on the adsorption, diffusion and permeation predicted that the PBAT membrane had excellent separation performance for phenol. Besides MD simulation, the influences of feed concentration and temperature on pervaporation performance were also investigated by experiment. The results showed that the flux of each component increased with the feed concentration. This phenomenon was attributed to the preferential adsorption of phenol by the PBAT membrane, which resulted in large free volumes and cavities within the membrane, accelerating the diffusion of molecules. In addition, it was found that the optimal operating temperature was 333 K with the best separation performance. This study confirms that the biodegradable PBAT membrane is valuable for the recovery of high boiling point organic compounds (HBOCs) such as phenol.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Chemistry, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Qian Xu
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| | - Changlin Liu
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan
| | - Xiaowei An
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Zhonglin Zhang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| | - Xiao Du
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| | - Ping Li
- Shanxi Institute of Applied Chemistry, Taiyuan 030024, P. R. China
| | - Jianbing Wu
- Shanxi Institute of Applied Chemistry, Taiyuan 030024, P. R. China
| | - Xiaogang Hao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| |
Collapse
|
4
|
Li C, Tang Y, Lin H, Zhang C, Liu Z, Yu L, Wang X, Lin Y. Novel multiscale simulations on the membrane formation via hybrid induced phase separation process based on dissipative particle dynamics. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Sun Q, Ma H, Wu L, Ding J, Wang L, Hu Y. Molecular Simulation for Guiding the Design and Optimization of Mixed Matrix Membranes (MMMs) in the Pervaporation Process. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5199-5210. [PMID: 36975611 DOI: 10.1021/acs.langmuir.3c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Molecular simulation has been used extensively in the study of pervaporation membranes as a new economical and environmentally friendly research method. In this paper, A-SiO2/PDMS-PTFE mixed matrix membranes (MMMs) were prepared by molecular-simulation-guided experiments to achieve the separation of dimethyl carbonate/methanol (DMC/MeOH)) azeotropes. The interaction energy, X-ray diffraction pattern mean square displacement, and density field between PDMS and inorganic particles were analyzed by molecular dynamics simulations. The dissolution and diffusion processes of the DMC/MeOH azeotropes system in the MMM were simulated, and the surface-silylated silica (A-SiO2) with relatively better performance was screened. Based on the simulation results, A-SiO2/PDMS-PTFE MMMs were prepared by the coblending method, and the pervaporation separation performance of MMM membranes for DMC/MeOH azeotropes with different A-SiO2 loadings was investigated. When the A-SiO2 loading was 15 wt %, the separation factor of DMC/MeOH azeotropes at 50 °C was 4.74 and the flux was 1178 g m-2 h-1, which was consistent with the expected results of the simulation. The MMMs showed good stability in pervaporation over a period of up to 120 h. This study demonstrates that molecular simulations can provide a viable means for pretest screening and validation of experimental mechanisms, and to a certain extent, guide the design and optimization of pervaporation membranes.
Collapse
Affiliation(s)
- Qichao Sun
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Hongli Ma
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Lianying Wu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiakun Ding
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Luchen Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangdong Hu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
6
|
Alonso-Riaño P, Illera AE, Amândio MS, Xavier AM, Beltrán S, Teresa Sanz M. Valorization of brewer’s spent grain by furfural recovery/removal from subcritical water hydrolysates by pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Wang Y, Xue T, Si Z, Liu C, Yang S, Li G, Zhuang Y, Qin P. Visible-light-induced ultrafast preparation of PDMS membrane for the pervaporative separation of furfural. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Staszak K, Wieszczycka K. Membrane applications in the food industry. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
Current trends in the food industry for the application of membrane techniques are presented. Industrial solutions as well as laboratory research, which can contribute to the improvement of membrane efficiency and performance in this field, are widely discussed. Special attention is given to the main food industries related to dairy, sugar and biotechnology. In addition, the potential of membrane techniques to assist in the treatment of waste sources arising from food production is highlighted.
Collapse
Affiliation(s)
- Katarzyna Staszak
- Institute of Technology and Chemical Engineering , Poznan University of Technology , Berdychowo 4 , Poznan , Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering , Poznan University of Technology , Berdychowo 4 , Poznan , Poland
| |
Collapse
|
9
|
Mass transport and pervaporation recovery of aniline with high-purity from dilute aqueous solution by PEBA/PVDF composite membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Yang Y, Sun X, Hu Q, Yan H, Li J, Zhao C, Zuo Z. Molecularly imprinted solid-phase extraction of Chikusetsu saponin IVa from Panacis majoris Rhizoma. J Sep Sci 2021; 44:3665-3676. [PMID: 34329523 DOI: 10.1002/jssc.202100209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022]
Abstract
As the main active component of Panacis majoris Rhizoma, Chikusetsu saponin IVa has the activity of anti-oxidation, anti-inflammatory pain, and so on. Obtaining high purity Chikusetsu saponin IVa by simple purification steps is a prerequisite for its deep development. In this paper, the separation and purification of Chikusetsu saponin IVa were studied by molecular imprinting technique. By ultraviolet and visible spectrophotometry and computer molecular simulation, it was concluded that water-soluble 3-(2-carboxyethyl)-1-vinylimidazolium bromide ionic liquid was the best functional monomer compared with acrylic acid and acrylamide. The molecularly imprinted polymers were prepared by precipitation polymerization at 60℃ with Chikusetsu saponin IVa as template molecule, 3-(2-carboxyethyl)-1-vinylimidazolium bromide as functional monomer, ethylene glycol dimethacrylate as cross-linker, 2, 2'-azobisisobutyronitrile as initiator, and ethanol as porogen. The properties of molecularly imprinted polymers were studied by scanning electron microscopy, Fourier transform infrared spectroscopy, thermo-gravimetric analysis, nitrogen adsorption/desorption isotherm, and X-ray photoelectron spectroscopy. The maximum adsorption capacity was 171.33 mg/g, and the imprinting factor was 2.6. Finally, the polymers can be successfully used in the purification of Chikusetsu saponin IVa from Panacis majoris Rhizoma through a simple procedure, the content was significantly increased. The recoveries of the spiked samples for the CS-IVa ranged from 94.05 to 99.95% with relative standard deviation values lower than 2.67%. The results showed that the polymers demonstrated good adsorption capacity for Chikusetsu saponin IVa. Meanwhile, the polymers showed great stability and reusability during the application.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Xuan Sun
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Qiao Hu
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Hao Yan
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Jin Li
- Northwestern Polytechnical University, Xi'an, P. R. China
| | - Chongbo Zhao
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Zhenyu Zuo
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, P. R. China.,Shaanxi Key Laboratory of Basic and New Herbal Medicament Research, Xi'an, P. R. China.,Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi, P. R. China
| |
Collapse
|
11
|
Zhang B, Qiao J, Dong C, Yi C, Qi S, Yang B. Dibenzo-21-crown-7-ether contained 6FDA-based polyimide membrane with improved gas selectivity. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Direct detection of Pb 2+ and Cd 2+ in juice and beverage samples using PDMS modified nanochannels electrochemical sensors. Food Chem 2021; 356:129632. [PMID: 33831833 DOI: 10.1016/j.foodchem.2021.129632] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/06/2021] [Accepted: 03/14/2021] [Indexed: 12/18/2022]
Abstract
Direct electrochemical detection in real food samples remains challenging due to the fouling and interference by abundant interference components. Herein, we report an electrochemical sensing platform based on binary assembly of silica nanochannels and polydimethylsiloxane that is able to detect Pb2+ and Cd2+ in real food samples without complex pretreatments. Using differential pulse anodic stripping voltammetry, the electrochemical detection consists of electro-deposition of metal species and subsequent anodic stripping in the modified silica-nanochannels. Under the optimized conditions, the linear ranges were obtained from 4 to 1500 μg L-1 for Pb2+ and 30 to 900 μg L-1 for Cd2+. The relative standard deviations were 2.9% and 3.6% for Pb2+ and Cd2+ of 300 μg L-1. Without tedious pretreatments, the quantitative detection of Pb2+ and Cd2+ in real juice and beverage samples was successfully performed, revealing that the developed sensor possesses excellent anti-interference and practicability properties for unprocessed food.
Collapse
|