1
|
Hu CY, Zhu YY, Xu B, Zhang TY, Lin YL, Xiong C, Wang QB, Huang DD, Xu L. Fe3O4 catalytic ozonation of iohexol degradation in the presence of 1-hydroxybenzotriazole: Performance, transformation mechanism, and pathways. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
2
|
Shen L, Chen Z, Kang J, Yan P, Shen J, Wang B, Zhao S, Bi L, Wang S, Cheng Y. N-nitrosodimethylamine formation during oxidation of N,N-dimethylhydrazine compounds by peroxymonosulfate: Kinetics, reactive species, mechanism and influencing factors. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128191. [PMID: 35033910 DOI: 10.1016/j.jhazmat.2021.128191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/05/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
This study found that peroxymonosulfate (PMS) oxidation without activation has the potential to generate a suspected human carcinogen, N-nitrosodimethylamine (NDMA), in water containing N,N-dimethylhydrazine compounds. Considerable amounts of NDMA formed from three compounds by PMS oxidation were observed. 1,1,1',1'-Tetramethyl-4,4'-(methylene-di-p-phenylene) disemicarbazide (TMDS), which is an industrial antiyellowing agent and light stabilizer, was used as a representative to elucidate the kinetics, transformation products, mechanism and NDMA formation pathways of PMS oxidation. TMDS degradation and NDMA formation involved direct PMS oxidation and singlet oxygen (1O2) oxidation. The oxidation by PMS/1O2 was pH-dependent, which was related to the pH-dependent characteristics of the reactive oxygen species and intermediates. The degradation mechanism of TMDS mainly included the side chain cleavage, dealkylation, and O-addition. NDMA was generated from TMDS mainly via O-addition and 1,1-dimethylhydrazine (UDMH) generation. The cleavage of amide nitrogen in O-addition products and primary amine nitrogen in UDMH are likely the key steps in NDMA generation. The results emphasized that the formation of harmful by-products should be taken into account when assessing the feasibility of PMS oxidation.
Collapse
Affiliation(s)
- Linlu Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jing Kang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Pengwei Yan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Binyuan Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Lanbo Bi
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shuyu Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yizhen Cheng
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|