1
|
Farahbakhsh J, Golgoli M, Khiadani M, Najafi M, Suwaileh W, Razmjou A, Zargar M. Recent advances in surface tailoring of thin film forward osmosis membranes: A review. CHEMOSPHERE 2024; 346:140493. [PMID: 37890801 DOI: 10.1016/j.chemosphere.2023.140493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The recent advancements in fabricating forward osmosis (FO) membranes have shown promising results in desalination and water treatment. Different methods have been applied to improve FO performance, such as using mixed or new draw solutions, enhancing the recovery of draw solutions, membrane modification, and developing FO-hybrid systems. However, reliable methods to address the current issues, including reverse salt flux, fouling, and antibacterial activities, are still in progress. In recent decades, surface modification has been applied to different membrane processes, including FO membranes. Introducing nanochannels, bioparticles, new monomers, and hydrophilic-based materials to the surface layer of FO membranes has significantly impacted their performance and efficiency and resulted in better control over fouling and concentration polarization (CP) in these membranes. This review critically investigates the recent developments in FO membrane processes and fabrication techniques for FO surface-layer modification. In addition, this study focuses on the latest materials and structures used for the surface modification of FO membranes. Finally, the current challenges, gaps, and suggestions for future studies in this field have been discussed in detail.
Collapse
Affiliation(s)
- Javad Farahbakhsh
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mitra Golgoli
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Wafa Suwaileh
- Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha, Qatar
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia.
| |
Collapse
|
2
|
Singh SK, Maiti A, Pandey A, Jain N, Sharma C. Fouling limitations of osmotic pressure‐driven processes and its remedial strategies: A review. J Appl Polym Sci 2023. [DOI: 10.1002/app.53295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Satish Kumar Singh
- Department of Paper Technology Indian Institute of Technology Roorkee Saharanpur India
| | - Abhijit Maiti
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India
| | - Aaditya Pandey
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India
| | - Nishant Jain
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India
| | - Chhaya Sharma
- Department of Paper Technology Indian Institute of Technology Roorkee Saharanpur India
| |
Collapse
|
3
|
Yu J, He Y, Wang Y, Zhang L, Hou R. Graphene oxide nanofiltration membrane for efficient dyes separation by hexagonal boron nitride nanosheets intercalation and polyethyleneimine surface modification. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Behboudi A, Mohammadi T, Ulbricht M. Fabrication and characterization of inner selective antibiofouling forward osmosis hollow fiber membranes for simultaneous wastewater treatment and desalination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Samannan B, Chen YS, Selvam J, Peter P, Lin YL, Thavasikani J. Hydrothermal method of Synthesis, Characterization and TFN FO membrane performances of silverton-type anion with 1, 3, 5-triazine hybrid material. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Yassari M, Shakeri A, Salehi H, Razavi SR. Enhancement in forward osmosis performance of thin-film nanocomposite membrane using tannic acid-functionalized graphene oxide. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02894-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Zhang T, Zhang J, Wang Q, Zhang H, Wang Z, Wu Z. Evaluating of the performance of natural mineral vermiculite modified PVDF membrane for oil/water separation by membrane fouling model and XDLVO theory. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Xu M, Zhao P, Tang CY, Yi X, Wang X. Preparation of electrically enhanced forward osmosis (FO) membrane by two-dimensional MXenes for organic fouling mitigation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Synthesizing Various Organic Polyacid Compounds for Modifying Forward Osmosis Membranes to Enhance Separation Performance. MEMBRANES 2021; 11:membranes11080597. [PMID: 34436360 PMCID: PMC8399665 DOI: 10.3390/membranes11080597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022]
Abstract
In order to overcome the challenges of low permeate flux (Jp) and the accompanying reverse solute flux (JS) during the forward osmosis (FO) membrane separation process, we synthesized four hybrid materials of polyacid-based organic compounds and incorporated them into the selective polyamide (PA) layer to make novel thin-film nanocomposite (TFN) FO membranes. The Jp and JS of each membrane were evaluated and used along with membrane selectivity (Jp/JS) as indicators of membrane separation performance. The fabricated and modified membranes were also characterized for ridge and valley surface morphologies with increasing hydrophilicity and finger-shaped parallel channels in the PSf substrate. Moreover, two highly hydrophilic nanoparticles of graphene oxide (GO) and titanium oxide (TiO2) were introduced with the hybrid materials for PA modification, which can further enhance the Jp of the TFN membranes. The highest Jp of the TFN membranes achieved 12.1 L/m2-h using 0.1% curcumin-acetoguanamine @ cerium polyacid (CATCP) and 0.0175% GO. The characteristic peaks of the hybrid materials were detected on the membrane surface using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, evidencing successful incorporation of the hybrid materials during membrane modification. Here, we present the novel TFN membranes using hybrid materials for separation applications. The reactions for synthesizing the hybrid materials and for incorporating them with PA layer are proposed.
Collapse
|
10
|
Shakeri A, Babaheydari SMM, Salehi H, Razavi SR. Reduction of the Structure Parameter of Forward Osmosis Membranes by Using Sodium Bicarbonate as Pore-Forming Agent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7591-7599. [PMID: 34106713 DOI: 10.1021/acs.langmuir.1c01097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The forward osmosis (FO) process suffers from unfavorable internal concentration polarization (ICP) of the solute within the support layer of thin-film composite forward osmosis (TFC-FO) membranes. To lower the ICP effect, a support layer with low tortuosity, high porosity, and interconnected pores is necessary. In the present investigation, sodium bicarbonate has been presented as a simple pore-forming agent to decline the ICP within a poly(ethersulfone) substrate. In particular, the porous poly(ethersulfone) support layer was fabricated by embedding sodium bicarbonate into the casting solution to form CO2 gas bubbles in the substrate during phase inversion in an acidic nonsolvent. Experimental results revealed that the separation performance of the TFC-FO membranes significantly improved. The most water-permeable membrane was prepared in the acidic nonsolvent (TFC-SB.3) and it demonstrated a water flux of 26.6 LMH and a reverse salt flux of 3.6 gMH in the FO test. In addition, the TFC-SB.3 membrane showed an 85% increase in water permeability (2.13 LMH/bar) with negligible change in salt rejection (94.3%). Such observations were based on the increase of substrate porosity and the improved connectivity of the finger-like channels through in situ CO2 gas bubbling that alleviate the ICP phenomena. Therefore, the current study presents a simple, scalable method to design a high-performance TFC-FO membrane.
Collapse
Affiliation(s)
- Alireza Shakeri
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6619, Tehran 25529, Iran
| | | | - Hasan Salehi
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6619, Tehran 25529, Iran
| | - Seyed Reza Razavi
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6619, Tehran 25529, Iran
| |
Collapse
|