1
|
Pan X, Pan J, Li Z, Gai W, Dong G, Huang M, Huang L. Preparation of N-MG-modified PVDF-CTFE substrate composite nanofiltration membrane and its selective separation of salt and dye. RSC Adv 2024; 14:11992-12008. [PMID: 38638887 PMCID: PMC11024597 DOI: 10.1039/d4ra00359d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) is considered an ideal membrane material for the treatment of complex environmental water due to its exceptional thermal stability and chemical resistance. Thus, to expand its application in the field of nanofiltration (NF) membranes, in this study, N-methylglucamine (N-MG) was used to hydrophilically modify PVDF-CTFE, overcoming the inherent hydrophobicity of PVDF-CTFE as a porous substrate membrane, which leads to difficulties in controlling the interfacial polymerization (IP) reaction and instability of the separation layer structure. The -OH present in N-MG could replace the C-Cl bond in the CTFE chain segment, thus enabling the hydrophilic graft modification of PVDF-CTFE. The influence of the addition of N-MG on the surface and pore structure, wettability, permeability, ultrafiltration separation, and mechanical properties of the PVDF-CTFE substrate membrane was studied. According to the comparison of the comprehensive capabilities of the prepared porous membranes, the M4 membrane with the addition of 1.5 wt% N-MG exhibited the best hydrophilicity and permeability, indicating that it is a desirable modified membrane for use as an NF substrate membrane. The experiments showed that the rejection of Na2SO4 by the NF membrane was 96.5% and greater than 94.0% for various dyes. In the test using dye/salt mixed solution, this membrane exhibited a good separation selectivity (CR/NaCl = 177.8) and long-term operational stability.
Collapse
Affiliation(s)
- Xinyu Pan
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Jian Pan
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Zhuoqun Li
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Wenqiang Gai
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Guangshun Dong
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Min Huang
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Lilan Huang
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| |
Collapse
|
2
|
Lu Q, Yang H, Chen Z, Yao L. Surface modification of nanofiltration membrane using polyoxometalates for improved separation and antifouling performance. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:904-914. [PMID: 38423608 PMCID: wst_2024_048 DOI: 10.2166/wst.2024.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In this study, polyoxometalates (POMs) as a core-modifying material was used to fabricate the nanofiltration (NF) membrane on the polyvinylidene fluoride (PVDF) microfiltration membrane substrate via a novel interfacial polymerization (IP) method. The formation mechanism of the POMs-modified composite membrane was proposed. The separation and antifouling properties were further investigated. After cross-linking with POMs through the new IP reaction, the modified composite membrane showed improved hydrophilicity, water flux, and salt rejection. In the humic acid fouling experiment, the POMs-modified membrane exhibited the best antifouling performance, with a flux recovery rate of up to 91.3%. Electrochemical impedance spectroscopy was further used to investigate the antifouling performance of the membranes. Nyquist and Bode plots of the POMs-modified membranes showed no significant change before and after fouling compared to the PVDF membrane substrate, indicating reduced fouling attachment on the modified membrane, which was consistent with the fouling index and flux variation observed during the fouling experiment. Our findings provide a simple and valuable route for fabricating POMs-functionalized NF membranes with desirable separation and antifouling performance.
Collapse
Affiliation(s)
- Qi Lu
- School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan, China E-mail:
| | - Haodong Yang
- Hubei Key Laboratory of Plasma Chemical and Advanced Materials & School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Zhe Chen
- Hubei Key Laboratory of Plasma Chemical and Advanced Materials & School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Lei Yao
- School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
3
|
Ahmad NNR, Mohammad AW, Mahmoudi E, Ang WL, Leo CP, Teow YH. An Overview of the Modification Strategies in Developing Antifouling Nanofiltration Membranes. MEMBRANES 2022; 12:membranes12121276. [PMID: 36557183 PMCID: PMC9780855 DOI: 10.3390/membranes12121276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 05/12/2023]
Abstract
Freshwater deficiency has become a significant issue affecting many nations' social and economic development because of the fast-growing demand for water resources. Nanofiltration (NF) is one of the promising technologies for water reclamation application, particularly in desalination, water, and wastewater treatment fields. Nevertheless, membrane fouling remains a significant concern since it can reduce the NF membrane performance and increase operating expenses. Consequently, numerous studies have focused on improving the NF membrane's resistance to fouling. This review highlights the recent progress in NF modification strategies using three types of antifouling modifiers, i.e., nanoparticles, polymers, and composite polymer/nanoparticles. The correlation between antifouling performance and membrane properties such as hydrophilicity, surface chemistry, surface charge, and morphology are discussed. The challenges and perspectives regarding antifouling modifiers and modification strategies conclude this review.
Collapse
Affiliation(s)
- Nor Naimah Rosyadah Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: author:
| | - Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Wei Lun Ang
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Choe Peng Leo
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Yeit Haan Teow
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
4
|
Khorram M, Chianeh FN, Shamsodin M. Preparation and characterization of a novel polyethersulfone nanofiltration membrane modified with Bi2O3 nanoparticles for enhanced separation performance and antifouling properties. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Progress for Co-Incorporation of Polydopamine and Nanoparticles for Improving Membranes Performance. MEMBRANES 2022; 12:membranes12070675. [PMID: 35877880 PMCID: PMC9317275 DOI: 10.3390/membranes12070675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
Incorporating polydopamine has become a viable method for membrane modification due to its universality and versatility. Fillers in their different categories have been confirmed as effective elements to improve the properties of membranes such as hydrophilicity, permeability, mechanical strength, and fouling resistance. Thus, this paper mainly highlights the recent studies that have been carried out using polydopamine and nanomaterial fillers simultaneously in modifying the performance of different membranes such as ultrafiltration, microfiltration, nanofiltration, reverse osmosis, and forward osmosis membranes according to the various modification methods. Graphene oxide nanoparticles have recently attracted a lot of attention among different nanoparticles used with polydopamine, due to their impressive characteristics impacts on enhancing membrane hydrophilicity, mechanical strength, and fouling resistance. Thus, the incorporation techniques of graphene oxide nanoparticles and polydopamine for enhancing membranes have been highlighted in this work. Moreover, different studies carried out on using polydopamine as a nanofiller for optimizing membrane performance have been discussed. Finally, perspectives, and possible paths of further research on mussel-inspired polydopamine and nanoparticles co-incorporation are stated according to the progress made in this field. It is anticipated that this review would provide benefits for the scientific community in designing a new generation of polymeric membranes for the treatment of different feed water and wastewater based on adhesive mussel inspired polydopamine polymer and nanomaterials combinations.
Collapse
|
6
|
Chen M, Luo J, Wan Y, Chen X, Liang X. Probing the influence of shape and loading of CeO2 nanoparticles on the separation performance of thin-film nanocomposite membranes with an interlayer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Novel infinite coordination polymer (ICP) modified thin-film polyamide nanocomposite membranes for simultaneous enhancement of antifouling and chlorine-resistance performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Ang MBMY, Lu YT, Huang SH, Millare JC, Tsai HA, Lee KR. Surfactant-assisted interfacial polymerization for improving the performance of nanofiltration-like forward osmosis membranes. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02942-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Yu T, Wang X, Liu Z, Chen Z, Hong Z, Zhang M, Zheng Q, Shao W, Xie Q. Structure-performance relationships between amino acid-functionalized graphene quantum dots and self-cleaning nanofiltration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Farahbakhsh J, Vatanpour V, Khoshnam M, Zargar M. Recent advancements in the application of new monomers and membrane modification techniques for the fabrication of thin film composite membranes: A review. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|