1
|
Shaligram S, Shevate R, Paul S, Shaffer DL. Highly Permselective Contorted Polyamide Desalination Membranes with Enhanced Free Volume Fabricated by mLbL Assembly. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9716-9727. [PMID: 39876064 DOI: 10.1021/acsami.4c14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The permeability-selectivity trade-off in polymeric desalination membranes limits the efficiency and increases the costs of reverse osmosis and nanofiltration systems. Ultrathin contorted polyamide films with enhanced free volume demonstrate an impressive 8-fold increase in water permeance while maintaining equivalent salt rejection compared to conventional polyamide membranes made with m-phenylenediamine and trimesoyl chloride monomers. The solution-based molecular layer-by-layer (mLbL) deposition technique employed for membrane fabrication sequentially reacts a shape-persistent contorted diamine monomer with a trimesoyl chloride monomer, forming highly cross-linked, dense polyamide networks while avoiding the kinetic and mass transfer limitations of traditional interfacial polymerization. The mLbL process allows precise nanoscale control over polyamide selective layer thickness, network structure, and surface roughness. The resulting controlled film thicknesses enable direct measurements of water and NaCl permeabilities. The permselectivities of contorted polyamide membranes surpass those of commercial desalination membranes and approach the reported polyamide upper bound. Solution-diffusion transport modeling indicates that this high permselectivity may be attributed to enhanced water transport pathways in the contorted polyamides that increase water diffusivity-permeability while maintaining high solute rejection through solubility-selectivity.
Collapse
Affiliation(s)
- Sayali Shaligram
- Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States
| | - Rahul Shevate
- Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States
| | - Siddhartha Paul
- Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States
| | - Devin L Shaffer
- Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States
| |
Collapse
|
2
|
Wei M, Zhang Y, Wang Y, Liu X, Li X, Zheng X. Employing Atomic Force Microscopy (AFM) for Microscale Investigation of Interfaces and Interactions in Membrane Fouling Processes: New Perspectives and Prospects. MEMBRANES 2024; 14:35. [PMID: 38392662 PMCID: PMC10890076 DOI: 10.3390/membranes14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Membrane fouling presents a significant challenge in the treatment of wastewater. Several detection methods have been used to interpret membrane fouling processes. Compared with other analysis and detection methods, atomic force microscopy (AFM) is widely used because of its advantages in liquid-phase in situ 3D imaging, ability to measure interactive forces, and mild testing conditions. Although AFM has been widely used in the study of membrane fouling, the current literature has not fully explored its potential. This review aims to uncover and provide a new perspective on the application of AFM technology in future studies on membrane fouling. Initially, a rigorous review was conducted on the morphology, roughness, and interaction forces of AFM in situ characterization of membranes and foulants. Then, the application of AFM in the process of changing membrane fouling factors was reviewed based on its in situ measurement capability, and it was found that changes in ionic conditions, pH, voltage, and even time can cause changes in membrane fouling morphology and forces. Existing membrane fouling models are then discussed, and the role of AFM in predicting and testing these models is presented. Finally, the potential of the improved AFM techniques to be applied in the field of membrane fouling has been underestimated. In this paper, we have fully elucidated the potentials of the improved AFM techniques to be applied in the process of membrane fouling, and we have presented the current challenges and the directions for the future development in an attempt to provide new insights into this field.
Collapse
Affiliation(s)
- Mohan Wei
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Yaozhong Zhang
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Yifan Wang
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaoping Liu
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
- Yulin Coal Chemical Waste Resource Utilization and Low Carbon Environmental Protection Engineering Technology Research Center, Yulin High-tech Zone Yuheng No. 1 Industrial Sewage Treatment Co., Ltd., Yulin 719000, China
| | - Xiaoliang Li
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
3
|
Kim S, Alayande AB, Eisa T, Jang J, Kang Y, Yang E, Hwang MH, Kim IS, Chae KJ. Fabrication and Performance Evaluation of a Cation Exchange Membrane Using Graphene Oxide/Polyethersulfone Composite Nanofibers. MEMBRANES 2023; 13:633. [PMID: 37504999 PMCID: PMC10383261 DOI: 10.3390/membranes13070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Ion exchange membranes, especially cation exchange membranes (CEMs), are an important component in membrane-based energy generation and storage because of their ability to transport cations via the electrochemical potential gradient while preventing electron transport. However, developing a CEM with low areal resistance, high permselectivity, and stability remains difficult. In this study, electrospun graphene oxide/polyethersulfone (GO/PES) composite nanofibers were prepared with varying concentrations of GO. To fabricate a CEM, the pores of the electrospun GO/PES nanofiber substrates were filled with a Nafion ionomer. The pore-filled PES nanofiber loaded with 1% GO revealed a noticeable improvement in hydrophilicity, structural morphology, and mechanical properties. The 1% GO/PES pore-filled CEM was compared to a Nafion membrane of a varying thickness and without a nanofiber substrate. The CEM with a nanofiber substrate showed permselectivity of 85.75%, toughness of 111 J/m3, and areal resistance of 3.7 Ω cm2, which were 12.8%, 4.3 times, and 4.0 times better, respectively, than those of the Nafion membrane at the same thickness. The development of a reinforced concrete-like GO/PES nanofiber structure containing stretchable ionomer-enhanced membrane surfaces exhibited suitable areal resistance and reduced the thickness of the composite membrane without compromising the mechanical strength, suggesting its potential application as a cation exchange membrane in electrochemical membrane-based systems.
Collapse
Affiliation(s)
- Suhun Kim
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Abayomi Babatunde Alayande
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyoung 53064, Republic of Korea
| | - Tasnim Eisa
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Jaewon Jang
- KEPCO Research Institute (KEPRI), Korea Electric Power Corporation (KEPCO), Naju 58277, Republic of Korea
| | - Yesol Kang
- Starch & Sweetener R&D Department, Daesang Corporation, Seoul 07789, Republic of Korea
| | - Euntae Yang
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyoung 53064, Republic of Korea
| | - Moon-Hyun Hwang
- Institute of Conversions Science, Korea University, Seoul 02841, Republic of Korea
| | - In S Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| |
Collapse
|
4
|
Xiong S, Qian X, Zhong Z, Wang Y. Atomic layer deposition for membrane modification, functionalization and preparation: A review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Khoerunnisa F, Nurhayati M, Annisa NAA, Fatimah S, Nashrah N, Hendrawan H, Ko YG, Ng EP, Opaprakasit P. Effects of Benzalkonium Chloride Contents on Structures, Properties, and Ultrafiltration Performances of Chitosan-Based Nanocomposite Membranes. MEMBRANES 2022; 12:268. [PMID: 35323744 PMCID: PMC8952018 DOI: 10.3390/membranes12030268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023]
Abstract
The effects of benzalkonium chloride (BKC) contents on the structure, properties, and ultrafiltration performance of chitosan-based nanocomposite membranes containing poly(ethylene glycol) and multi-walled carbon nanotube (chitosan/BKC/PEG/CNT) were examined. The membranes were prepared by a mixing solution method and phase inversion before being characterized with microscopic techniques, tensile tests, thermogravimetric analysis, water contact angle, and porosity measurements. The performance of the nanocomposite membranes in regard to permeability (flux) and permselectivity (rejection) was examined. The results show that the incorporation of BKC produced nanocomposite membranes with smaller pore structures and improved physico-chemical properties, such as an increase in porosity and surface roughness (Ra = 45.15 to 145.35 nm and Rq = 53.69 to 167.44 nm), an enhancement in the elongation at break from 45 to 109%, and an enhancement in the mechanical strength from 31.2 to 45.8 MPa. In contrast, a decrease in the membrane hydrophilicity (water contact angle increased from 56.3 to 82.8°) and a decrease in the average substructure pore size from 32.64 to 10.08 nm were observed. The membrane rejection performances toward Bovine Serum Albumin (BSA) increased with the BKC composition in both dead-end and cross-flow filtration processes. The chitosan/BKC/PEG/CNT nanocomposite membranes have great potential in wastewater treatments for minimizing biofouling without reducing the water purification performance.
Collapse
Affiliation(s)
- Fitri Khoerunnisa
- Department of Chemistry, Indonesia University of Education, Setiabudhi 229, Bandung 40154, Indonesia; (M.N.); (N.A.A.A.); (H.H.)
| | - Mita Nurhayati
- Department of Chemistry, Indonesia University of Education, Setiabudhi 229, Bandung 40154, Indonesia; (M.N.); (N.A.A.A.); (H.H.)
| | - Noor Azmi Aulia Annisa
- Department of Chemistry, Indonesia University of Education, Setiabudhi 229, Bandung 40154, Indonesia; (M.N.); (N.A.A.A.); (H.H.)
| | - Siti Fatimah
- School of Material Science & Engineering, Yeungnam University, Gyeongsan 38541, Korea; (S.F.); (N.N.); (Y.-G.K.)
| | - Nisa Nashrah
- School of Material Science & Engineering, Yeungnam University, Gyeongsan 38541, Korea; (S.F.); (N.N.); (Y.-G.K.)
| | - Hendrawan Hendrawan
- Department of Chemistry, Indonesia University of Education, Setiabudhi 229, Bandung 40154, Indonesia; (M.N.); (N.A.A.A.); (H.H.)
| | - Young-Gun Ko
- School of Material Science & Engineering, Yeungnam University, Gyeongsan 38541, Korea; (S.F.); (N.N.); (Y.-G.K.)
| | - Eng-Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia;
| | - Pakorn Opaprakasit
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Khlong Luang 12121, Thailand
| |
Collapse
|
6
|
Yan X, Cheng S, Ma C, Li J, Wang G, Yang C. D-spacing controllable GO membrane intercalated by sodium tetraborate pentahydrate for dye contamination wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126939. [PMID: 34449342 DOI: 10.1016/j.jhazmat.2021.126939] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/15/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Sodium tetraborate pentahydrate (STB) was intercalated into graphene oxide (GO) nanosheets to form a nanocomposite (STB@GO). Subsequently, it was self-assembled on a substrate membrane to prepare STB@GO nanofiltration membrane. The properties of the STB@GO powder samples and the nanofiltration membrane were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), contact angle (CA), and zeta potential. When the STB concentration was 1.0 g/L in the cross-linking reaction, the membrane was described as the STB2@GO membrane and exhibited a large interlayer space (d-spacing = 1.347 nm), high hydrophilicity (CA = 22.2°), and high negative potential (zeta = -18.0 mV). Meanwhile, the pure water flux of the membrane was significantly increased by 56.60% than that of the GO membrane. In addition, the STB2@GO membrane exhibited a favorable capability for dye rejection,98.52% for Evans blue (EB), 99.26% for Victoria blue B (VB), 91.94% for Alizarin yellow (AY), and 93.21% for Neutral red (NR). Furthermore, the STB2@GO membrane performed better in dye separation under various types and concentrations of dye, pH values, and ions in solution. Thus, this study provides a promising method for preparing laminated GO nanofiltration membranes for dye wastewater treatment.
Collapse
Affiliation(s)
- Xiaoju Yan
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Shirong Cheng
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Tianjin Haiyuanhui Technology Co., Ltd., Tianjin 300457, China.
| | - Junyu Li
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Guodong Wang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Chengyu Yang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| |
Collapse
|