1
|
Itskou I, Kafizas A, Nevjestic I, Carrero SG, Grinter DC, Azzan H, Kerherve G, Kumar S, Tian T, Ferrer P, Held G, Heutz S, Petit C. Effects of Phosphorus Doping on Amorphous Boron Nitride's Chemical, Sorptive, Optoelectronic, and Photocatalytic Properties. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:13249-13263. [PMID: 39140095 PMCID: PMC11317980 DOI: 10.1021/acs.jpcc.4c02314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
Amorphous porous boron nitride (BN) represents a versatile material platform with potential applications in adsorptive molecular separations and gas storage, as well as heterogeneous and photo-catalysis. Chemical doping can help tailor BN's sorptive, optoelectronic, and catalytic properties, eventually boosting its application performance. Phosphorus (P) represents an attractive dopant for amorphous BN as its electronic structure would allow the element to be incorporated into BN's structure, thereby impacting its adsorptive, optoelectronic, and catalytic activity properties, as a few studies suggest. Yet, a fundamental understanding is missing around the chemical environment(s) of P in P-doped BN, the effect of P-doping on the material features, and how doping varies with the synthesis route. Such a knowledge gap impedes the rational design of P-doped porous BN. Herein, we detail a strategy for the successful doping of P in BN (P-BN) using two different sources: phosphoric acid and an ionic liquid. We characterized the samples using analytical and spectroscopic tools and tested them for CO2 adsorption and photoreduction. Overall, we show that P forms P-N bonds in BN akin to those in phosphazene. P-doping introduces further chemical/structural defects in BN's structure, and hence more/more populated midgap states. The selection of P source affects the chemical, adsorptive, and optoelectronic properties, with phosphoric acid being the best option as it reacts more easily with the other precursors and does not contain C, hence leading to fewer reactions and C impurities. P-doping increases the ultramicropore volume and therefore CO2 uptake. It significantly shifts the optical absorption of BN into the visible and increases the charge carrier lifetimes. However, to ensure that these charges remain reactive toward CO2 photoreduction, additional materials modification strategies should be explored in future work. These strategies could include the use of surface cocatalysts that can decrease the kinetic barriers to driving this chemistry.
Collapse
Affiliation(s)
- Ioanna Itskou
- Barrer
Centre, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Andreas Kafizas
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 7TA, U.K.
- London
Centre for Nanotechnology, Imperial College
London, London SW7 2AZ, U.K.
| | - Irena Nevjestic
- London
Centre for Nanotechnology, Imperial College
London, London SW7 2AZ, U.K.
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Soranyel Gonzalez Carrero
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 7TA, U.K.
| | - David C. Grinter
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Hassan Azzan
- Barrer
Centre, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Gwilherm Kerherve
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Santosh Kumar
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Tian Tian
- Barrer
Centre, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Pilar Ferrer
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Georg Held
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Sandrine Heutz
- London
Centre for Nanotechnology, Imperial College
London, London SW7 2AZ, U.K.
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Camille Petit
- Barrer
Centre, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K.
| |
Collapse
|
2
|
Nan Y, Feng C, Zhuo Y, Hu P. Co-adsorption enhancement of formaldehyde/carbon dioxide over modified hexagonal boron nitride for whole-surface capture purification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120586. [PMID: 38513581 DOI: 10.1016/j.jenvman.2024.120586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/20/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Simultaneous capture of formaldehyde (HCHO) and carbon dioxide (CO2) in indoor air is promising of achieving indoor-air purification. Of all potential adsorbents, hexagonal boron nitride (h-BN) is one of the most suitable species owing to facile formation of attraction points. Therefore, in this study, performances of HCHO and CO2 being adsorbed over pure/modified h-BN are systematically investigated via density functional theory (DFT) calculations. Minutely speaking, direct interaction between HCHO and CO2, single-point adsorption enhancement of HCHO over modified h-BN, co-adsorption reinforcement of HCHO/CO2 as well as relevant thermodynamic characteristics are major research contents. According to calculation results, there is relatively strong attraction between HCHO and CO2 owing to hydrogen bonds, which is in favor of co-adsorption of HCHO/CO2. As to single-adsorption of HCHO, C-doped h-BN shows better adsorption features than P-doped h-BN and C/P-doped h-BN is slightly weakened in adsorption ability due to surficial deformation caused by P atoms. For co-adsorption of HCHO/CO2, CO2 is the protagonist via formation of quasi-carbonate with the help of delocalized π-orbital electrons. Regarding effects of temperatures on adsorption strengths, they depend on interelectronic interactions among dopant atoms and finally derives from dispersion of π bonds across adsorbents. Overall, this study provides detailed mechanisms for co-capture of HCHO/CO2 to accomplish indoor-air purification.
Collapse
Affiliation(s)
- Yanli Nan
- China Southwest Architectural Design and Research Institute Corp. Ltd, Chengdu, 610041, Sichuan, PR China
| | - Chi Feng
- School of Architecture and Urban Planning, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yuqun Zhuo
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Pengbo Hu
- School of Architecture and Urban Planning, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
3
|
Yang Y, Shen Z, Yang H, Zou X, Meng Y, Jiang L, Liu Y, Xia Q, Cao Y, Li X, Gao J, Wang Y. Construction adsorption and photocatalytic interfaces between C, O co-doped BN and Pd-Cu alloy nanocrystals for effective conversion of CO 2 to CO. J Colloid Interface Sci 2023; 640:949-960. [PMID: 36907155 DOI: 10.1016/j.jcis.2023.02.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Photocatalytic reduction of carbon dioxide (CO2) into fuels is an auspicious route to alleviate the energy and environmental crisis brought by the continuous depletion of fossil fuels. The CO2 adsorption state on the surface of photocatalytic materials plays a significant role in its efficient conversion. The limited CO2 adsorption capacity of conventional semiconductor materials inhibit their photocatalytic performances. In this work, a bifunctional material for CO2 capture and photocatalytic reduction was fabricated by introducing palladium (Pd)-copper (Cu) alloy nanocrystals onto the surface of carbon, oxygen co-doped boron nitride (BN). The elemental doped BN with abundant ultra-micropores had high CO2 capture ability, and CO2 was adsorbed in the form of bicarbonate on its surface with the presence of water vapor. The Pd/Cu molar ratio had great impact on the grain size of Pd-Cu alloy and their distribution on BN. The CO2 molecules tended to be converted to carbon monoxide (CO) at interfaces of BN and Pd-Cu alloys due to their bidirectional interactions to the adsorbed intermediate species while methane (CH4) evolution might occur on the surface of Pd-Cu alloys. Owing to the uniform distribution of smaller Pd-Cu nanocrystals on BN, more effective interfaces were created in the Pd5Cu1/BN sample and it gave a CO production rate of 7.74 μmolg-1h-1 under simulated solar light irradiation, higher than the other PdCu/BN composites. This work can pave a new way for constructing effective bifunctional photo-catalysts with high selectivity to convert CO2 to CO.
Collapse
Affiliation(s)
- Yang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China; College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhangfeng Shen
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Hanwu Yang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xuhui Zou
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yuxiao Meng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China; College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Lingchang Jiang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yanan Liu
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Qineng Xia
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yongyong Cao
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xi Li
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jing Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Yangang Wang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
4
|
Weng Y, Ma X, Yuan G, Lv H, Yuan Z. Novel Janus MoSiGeN 4 nanosheet: adsorption behaviour and sensing performance for NO and NO 2 gas molecules. RSC Adv 2022; 12:24743-24751. [PMID: 36199889 PMCID: PMC9433950 DOI: 10.1039/d2ra03957e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
A novel Janus MoSiGeN4 nanosheet is proposed for detecting poisonous gas molecules. Herein, the adsorption behaviour and sensing performance of both sides of the MoSiGeN4 monolayer to NO and NO2 gas molecules were investigated by first-principles calculations. Firstly, it is found that the MoSiGeN4 monolayer exhibits structural stability and indirect gap semiconductor characteristics. The largest adsorption energy of NO2 molecules on the MoSiGeN4 monolayer is -0.24 eV, which is higher than the -0.13 eV for NO molecules. Of course, the physisorption between gas molecules and the MoSiGeN4 monolayer appears with slight charge transfer. It is confirmed that NO molecules and NO2 molecules act as electron donors and electron acceptors, respectively. Meanwhile, the generation of small band gaps and impurity levels in the electronic structures after gas adsorption is in favour of the enhancement of electronic conductivity. Furthermore, the longest recovery times of NO and NO2 molecules are predicted to be 0.15 and 10.67 ns at room temperature, and the lateral diffusion at the surface requires crossing a large energy barrier. These findings provide indisputable evidence for further design and fabrication of highly sensitive gas sensors based on the MoSiGeN4 monolayer.
Collapse
Affiliation(s)
- Yixin Weng
- School of Science, Hubei University of Technology Wuhan 430068 China
| | - Xinguo Ma
- School of Science, Hubei University of Technology Wuhan 430068 China
| | - Gang Yuan
- School of Science, Hubei University of Technology Wuhan 430068 China
| | - Hui Lv
- Hubei Engineering Technology Research Centre of Energy Photoelectric Device and System, Hubei University of Technology Wuhan 430068 China
| | - Zhongyong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
5
|
Wang B, Chen X, Yu G. A new biphasic system of TEPA/DGME/Water for capturing CO2. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Hu P, Wang S, Zhuo Y. CO 2 adsorption enhancement over Al/C-doped h-BN: A DFT study. CHEMOSPHERE 2022; 292:133396. [PMID: 34968508 DOI: 10.1016/j.chemosphere.2021.133396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Reducing energy barriers of CO2 being chemisorbed on hexagonal boron nitride (h-BN) is a kernel step to efficiently and massively capture CO2. In this study, aluminum/carbon (Al/C) atoms are used as dopants to alter surface potential fields of h-BN, which aims at lowering energy barriers of adsorption processes. Through theoretical calculations, direct-adsorption structures/properties of CO2, joint-adsorption structures/properties of CO2/H2O, transition state (TS) energy barriers, effects of temperatures on adsorption energies/TS energy barriers and changes of reaction rate constants over different adsorbents are investigated in detail in order to reveal how doping of Al/C atoms promotes CO2 adsorption strength over doped h-BN. According to DFT calculation results, the average adsorption energy of CO2 being directly adsorbed on Al/C-doped h-BN arrives at -59.43 kJ/mol, which is about 5 times as big as that over pure h-BN. As to the average adsorption energy of CO2/H2O and relevant TS energy barrier, they are modified to -118.89 kJ/mol and 40.23 kJ/mol over Al/C-doped h-BN in contrast with -33.91 kJ/mol and 1695.11 kJ/mol over pure h-BN, respectively. What is more, based on thermodynamic analyses and reaction dynamics, the average desorption temperatures of CO2(/H2O) are promoted over doped h-BN and the temperature power exponent is negatively correlated with the activation energy in the Arrhenius equation form. The complete understanding of this study would supply crucial information for applying Al/C-doped h-BN to effectively capturing CO2 in real industries.
Collapse
Affiliation(s)
- Pengbo Hu
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, PR China; Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, PR China
| | - Shujuan Wang
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, PR China; Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, PR China; Engineering Research Center for Ecological Restoration and Carbon Fixation of Saline-Alkaline and Desert Land, Tsinghua University, Beijing, 00084, PR China
| | - Yuqun Zhuo
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, PR China; Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, PR China; Engineering Research Center for Ecological Restoration and Carbon Fixation of Saline-Alkaline and Desert Land, Tsinghua University, Beijing, 00084, PR China.
| |
Collapse
|
7
|
Hu P, Wang S, Zhuo Y. Fe-Catalyzed CO 2 Adsorption over Hexagonal Boron Nitride with the Presence of H 2O. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1056-1069. [PMID: 34974700 DOI: 10.1021/acsami.1c20725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The energy barrier of CO2 chemically adsorbed on hexagonal boron nitride (h-BN) is relatively big. In order to cut down the energy barriers and facilitate fast adsorption of CO2, it is necessary to apply catalysts as a promoter. In this study, single-atom iron is introduced as the catalyst to reduce the energy barriers of CO2 adsorbed on pure/doped h-BN. Through density functional theory calculations, catalytic reaction mechanisms, stability of single-atom iron fixed on adsorbents, CO2 adsorption characteristics, and features of thermodynamics/reaction dynamics during adsorption processes are fully investigated to explain the catalytic effects of single-atom iron on CO2 chemisorption. According to calculations, when CO2 and OH- get into activated states (i.e., CO2•- and •OH) with the help of single-atom iron, their chemical activities will be promoted to a large degree, which makes the transition state (TS) energy barrier of HCO3- to decrease by 92.54%. In the meantime, it is proved that single-atom iron could be stably fixed on doped h-BN with the binding energy larger than 2 eV to achieve sustainable catalysis. With the presence of single-atom iron, TS energy barriers of CO2 adsorbed on h-BN with the presence of H2O decreased by 94.39, 78.87, and 30.63% over pure h-BN, 3C-doped h-BN, and 3N-doped h-BN, respectively. In the meantime, thermodynamic analyses indicate that TS energy barriers are mainly determined by element doping and temperatures are a little beneficial to the reduction of TS energy barriers. With the above aspects combined, the results of this study could supply crucial information for massively and quickly capturing CO2 in real industries.
Collapse
Affiliation(s)
- Pengbo Hu
- Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
- Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, PR China
| | - Shujuan Wang
- Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
- Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, PR China
- Engineering Research Center for Ecological Restoration and Carbon Fixation of Saline-Alkaline and Desert Land, Tsinghua University, Beijing 100084, PR China
| | - Yuqun Zhuo
- Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
- Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, PR China
- Engineering Research Center for Ecological Restoration and Carbon Fixation of Saline-Alkaline and Desert Land, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|