1
|
Zhang Y, Li H, Yin D. Recent Progress in Bismuth Vanadate-Based Photocatalysts for Photodegradation Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:331. [PMID: 40072134 PMCID: PMC11901587 DOI: 10.3390/nano15050331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Bismuth vanadate (BiVO4), a well-known semiconductor photocatalyst with various advantages, has shown great potential in addressing energy and environmental issues. However, its inherent drawbacks restrict the photocatalytic performance of pure BiVO4. In the past few years, many efforts have been devoted to improving the catalytic activity of BiVO4 and revealing the degradation mechanism in depth. In this review, we summarized the recent progress on BiVO4 in the field of photocatalytic degradation, including the strategies which enhance light absorption ability and suppress the recombination of charge carriers of BiVO4, as well as the related degradation mechanism. Finally, future prospects and challenges are summarized, which may provide new guidelines for designing more effective BiVO4-based photocatalysts for the degradation of persistent organic pollutants.
Collapse
Affiliation(s)
| | | | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (H.L.)
| |
Collapse
|
2
|
Zhao J, Li C, Yu Q, Zhu Y, Liu X, Li S, Liang C, Zhang Y, Huang L, Yang K, Zhang Z, Zhai Y. Interface engineering of Mn 3O 4/Co 3O 4 S-scheme heterojunctions to enhance the photothermal catalytic degradation of toluene. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131249. [PMID: 36966624 DOI: 10.1016/j.jhazmat.2023.131249] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Transition metal oxides have high photothermal conversion capacity and excellent thermal catalytic activity, and their photothermal catalytic ability can be further improved by reasonably inducing the photoelectric effect of semiconductors. Herein, Mn3O4/Co3O4 composites with S-scheme heterojunctions were fabricated for photothermal catalytic degradation of toluene under ultraviolet-visible (UV-Vis) light irradiation. The distinct hetero-interface of Mn3O4/Co3O4 effectively increases the specific surface area and promotes the formation of oxygen vacancies, thus facilitating the generation of reactive oxygen species and migration of surface lattice oxygen. Theoretical calculations and photoelectrochemical characterization demonstrate the existence of a built-in electric field and energy band bending at the interface of Mn3O4/Co3O4, which optimizes the photogenerated carriers' transfer path and retains a higher redox potential. Under UV-Vis light irradiation, the rapid transfer of electrons between interfaces promotes the generation of more reactive radicals, and the Mn3O4/Co3O4 shows a substantial improvement in the removal efficiency of toluene (74.7%) compared to single metal oxides (53.3% and 47.5%). Moreover, the possible photothermal catalytic reaction pathways of toluene over Mn3O4/Co3O4 were also investigated by in situ DRIFTS. The present work offers valuable guidance toward the design and fabrication of efficient narrow-band semiconductor heterojunction photothermal catalysts and provides deeper insights into the mechanism of photothermal catalytic degradation of toluene.
Collapse
Affiliation(s)
- Jungang Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Caiting Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Qi Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Youcai Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Shanhong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Caixia Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ying Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Le Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Kuang Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ziang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
3
|
Song R, Kang S, Yao L, Zheng L, Yu D, Zhang D. Construction of an La-BiVO 4/O-Doped g-C 3N 4 Heterojunction Photocatalyst Embedded in Electrospinning Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6647-6656. [PMID: 37133555 DOI: 10.1021/acs.langmuir.2c03356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BiVO4 has been widely used in the field of photocatalysis due to its nontoxic and moderate band gap. However, single BiVO4 has the disadvantages of a high recombination rate of photogenerated carriers and weak response to visible light, inhibiting its photocatalytic applications. To explore viable solutions, a hybrid material composed of lanthanum-doped bismuth vanadate (La-BiVO4) and oxygen-doped porous graphite carbon nitride (O-doped g-C3N4), i.e., La-BiVO4/O-doped g-C3N4 powder, was prepared by a facile hydrothermal reaction and low-temperature calcination. Then, the powder was loaded on polyacrylonitrile nanofibers (NFs) through the electrospinning fiber technique. Various surface science characterizations, including transmission electron microscopy and nitrogen absorption and desorption analysis, confirmed the successful synthesis of a mesoporous heterojunction material. The La3+-doping as well as the porous morphologies and larger specific surface area of the O-doped g-C3N4 ultimately improve the photocatalytic abilities via a proposed Z-scheme heterojunction mechanism. The roles of La3+-doping and morphology modification in promoting the separation of the photogenerated carriers and broadening the optical absorption range were experimentally discussed. The RhB degradation experiment indicated that the La-BiVO4/O-doped g-C3N4 powder has excellent photocatalytic activity, which is about 2.85 and 2 times higher than that of the pure BiVO4 and O-doped g-C3N4, respectively. Meanwhile, the La-BiVO4/O-doped g-C3N4 NF shows good stability and recoverability after a 10-cycle testing. Such a hybrid photocatalyst with a proposed Z-scheme heterojunction mechanism and good plasticity might pave a feasible way to fabricate a new library of photocatalysts.
Collapse
Affiliation(s)
- Ruixin Song
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Shifei Kang
- Institute of Photochemistry and Photocatalyst, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Liangtao Yao
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Dechao Yu
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
4
|
Cheng C, Shi Q, Zhu W, Zhang Y, Su W, Lu Z, Yan J, Chen K, Wang Q, Li J. Microwave-Assisted Synthesis of MoS 2/BiVO 4 Heterojunction for Photocatalytic Degradation of Tetracycline Hydrochloride. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091522. [PMID: 37177067 PMCID: PMC10180445 DOI: 10.3390/nano13091522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Compared with traditional hydrothermal synthesis, microwave-assisted synthesis has the advantages of being faster and more energy efficient. In this work, the MoS2/BiVO4 heterojunction photocatalyst was synthesized by the microwave-assisted hydrothermal method within 30 min. The morphology, structure and chemical composition were characterized by X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and high-resolution transmission electron microscopy (HRTEM). The results of characterizations demonstrated that the synthesized MoS2/BiVO4 heterojunction was a spherical structure with dimensions in the nanorange. In addition, the photocatalytic activity of the samples was investigated by degrading tetracycline hydrochloride (TC) under visible light irradiation. Results indicated that the MoS2/BiVO4 heterojunction significantly improved the photocatalytic performance compared with BiVO4 and MoS2, in which the degradation rate of TC (5 mg L-1) by compound where the mass ratio of MoS2/BiVO4 was 5 wt% (MB5) was 93.7% in 90 min, which was 2.36 times of BiVO4. The active species capture experiments indicated that •OH, •O2- and h+ active species play a major role in the degradation of TC. The degradation mechanism and pathway of the photocatalysts were proposed through the analysis of the band structure and element valence state. Therefore, microwave technology provided a quick and efficient way to prepare MoS2/BiVO4 heterojunction photocatalytic efficiently.
Collapse
Affiliation(s)
- Cixin Cheng
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Qin Shi
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
- Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning 530006, China
| | - Weiwei Zhu
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Yuheng Zhang
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Wanyi Su
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Zizheng Lu
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Jun Yan
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Kao Chen
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Qi Wang
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming 650093, China
| | - Junshan Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
5
|
Yang Y, Toyoda M, Yamaguchi A, Cho Y, El Aisnada AN, Abe H, Ueda S, Okunaka S, Saito S, Liu M, Tokudome H, Miyauchi M. Bandgap widening through doping for improving the photocatalytic oxidation ability of narrow-bandgap semiconductors. Phys Chem Chem Phys 2022; 25:255-261. [PMID: 36477553 DOI: 10.1039/d2cp02994d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The trade-off relationship between narrowing the bandgap and achieving sufficient redox potentials accounts for the hindrance to the development of an efficient photocatalyst. Most of the previous researchers attempt to narrow the bandgap of semiconductors by impurity doping to achieve visible-light sensitivity, but this approach causes the losses of their oxidation and/or reduction ability. Conversely, this study presents a bandgap widening strategy by doping to improve the redox potential of photogenerated carriers. Employing first-principles simulations, we propose the lanthanum-doped bismuth vanadate (La-BiVO4) photocatalyst as a wider-bandgap semiconductor exhibiting stronger oxidation ability compared to pristine BiVO4, and the results revealed that the bismuth orbital in the valence band (VB) was diluted by lanthanum-ion doping, while the VB shifted to a higher potential (positively shifted). Thereafter, a La-BiVO4 powder was synthesized via a solid-state reaction, after which its activity was evaluated in the photocatalytic oxidation of 2-propanol (IPA). La-BiVO4 exhibited bandgap widening; thus, the number of absorbed photons under visible-light irradiation was lower than that of pristine BiVO4. However, the quantum efficiency (QE) of La-BiVO4 for the oxidation of IPA was higher than that of the pristine BiVO4. Consequently, the photocatalytic reaction rate of La-BiVO4 was superior to that of pristine BiVO4 under the same visible-light irradiation conditions. Although the bandgap of La-BiVO4 is widened, it is still sensitive to the cyan-light region, which is the strongest in the sunlight spectrum. These results demonstrate that the orbital dilution strategy by impurity elemental doping is effective for bandgap widening and contributes to improving the oxidation and/or reduction ability of the photogenerated charge carriers. This study elucidates the possibility of boosting photocatalytic performances via bandgap widening.
Collapse
Affiliation(s)
- Yue Yang
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan.
| | - Masayuki Toyoda
- Department of Physics, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551, Japan
| | - Akira Yamaguchi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan.
| | - Yohei Cho
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan.
| | - An Niza El Aisnada
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan.
| | - Hideki Abe
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Shigenori Ueda
- Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.,Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.,Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Sayuri Okunaka
- Global Zero Emission Research Center (GZR), National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8559, Japan
| | - Susumu Saito
- Department of Physics, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551, Japan.,Advanced Research Center for Quantum Physics and Nanoscience, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.,Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physical and Electronics, Central South University, Changsha, P. R. China
| | - Hiromasa Tokudome
- Research Institute, TOTO Ltd, 2-8-2 Honson, Chigasaki, Kanagawa 253-8577, Japan.
| | - Masahiro Miyauchi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan.
| |
Collapse
|
6
|
Zhu P, Zhang S, Liu R, Luo D, Yao H, Zhu T, Bai X. Investigation of an enhanced Z-scheme magnetic recyclable BiVO4/GO/CoFe2O4 photocatalyst with visible-light-driven for highly efficient degradation of antibiotics. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Peng J, Peng Y, He F, Xu L, Wang Q, Li Y, Qiu J, Yang Z, Song Z. Enhanced UV–Vis photocatalytic activity of SrBiO2Cl through La doping. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Peng J, Peng Y, Wang T, Wu Z, Wang Q, Li Y, Yin Z, Han J, Qiu J, Yang Z, Song Z. Enhanced UV–Vis–NIR photocatalytic activity of La doped BaBiO2Cl: Role of oxygen vacancies. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Visible-Light-Driven Antimicrobial Activity and Mechanism of Polydopamine-Reduced Graphene Oxide/BiVO4 Composite. Int J Mol Sci 2022; 23:ijms23147712. [PMID: 35887058 PMCID: PMC9315587 DOI: 10.3390/ijms23147712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, a photocatalytic antibacterial composite of polydopamine-reduced graphene oxide (PDA-rGO)/BiVO4 is prepared by a hydrothermal self-polymerization reduction method. Its morphology and physicochemical properties are characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared (FT-IR), and X-ray diffraction (XRD). The results indicate that BiVO4 particles are evenly distributed on the rGO surface. Escherichia coli (E. coli) MG1655 is selected as the model bacteria, and its antibacterial performance is tested by flat colony counting and the MTT method under light irradiation. PDA-rGO/BiVO4 inhibits the growth of E. coli under both light and dark conditions, and light significantly enhances the bacteriostasis of PDA-rGO/BiVO4. A combination of BiVO4 with PDA-rGO is confirmed by the above characterization methods as improving the photothermal performance under visible light irradiation. The composite possesses enhanced photocatalytic antibacterial activity. Additionally, the photocatalytic antibacterial mechanism is investigated via the morphology changes in the SEM images of MG1655 bacteria, 2′,7′-dichlorofluorescein diacetate (DCFH-DA), the fluorescence detection of the reactive oxygen species (ROS), and gene expression. These results show that PDA-rGO/BiVO4 can produce more ROS and lead to bacterial death. Subsequently, the q-PCR results show that the transmembrane transport of bacteria is blocked and the respiratory chain is inhibited. This study may provide an important strategy for expanding the application of BiVO4 in biomedicine and studying the photocatalytic antibacterial mechanism.
Collapse
|
10
|
Piao M, Sun Y, Wang Y, Teng H. Preparation of BiVO
4
/RGO‐TNT Nanomaterials for Efficient and Recyclable Photocatalysis of Imidacloprid Insecticide. ChemistrySelect 2022. [DOI: 10.1002/slct.202200182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control the Education Department of Jilin Province Jilin Normal University Siping China
- College of Environmental Science and Engineering Jilin Normal University Siping China
| | - Yuwei Sun
- Key Laboratory of Environmental Materials and Pollution Control the Education Department of Jilin Province Jilin Normal University Siping China
- College of Environmental Science and Engineering Jilin Normal University Siping China
| | - Yixuan Wang
- College of Environmental Science and Engineering Jilin Normal University Siping China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control the Education Department of Jilin Province Jilin Normal University Siping China
- College of Environmental Science and Engineering Jilin Normal University Siping China
| |
Collapse
|
11
|
Vertical interface coupling between crystalline α-Fe2O3 and carbon nitride nanosheets for efficient degradation of organic pollutants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Guo KK, Yang YL, Dong SM, Li FY, Jiang XY, Xu L. Decomposition-Reassembly Synthesis of a Silverton-Type Polyoxometalate 3D Framework: Semiconducting Properties and Photocatalytic Applications. Inorg Chem 2022; 61:6411-6420. [PMID: 35442652 DOI: 10.1021/acs.inorgchem.1c03928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyoxometalate-based all-inorganic three-dimensional (3D) frameworks have recently attracted attention as a unique class of materials due to their unique physicochemical properties and a wide field of application with excellent prospects. We herein synthesized a novel all-inorganic 3D framework material based on cobalt-substituted Silverton-type polyoxometalate, H6{Co6W10O42[Co(H2O)4]3}·2H2O (Co9W10), which was successfully constructed using Na12[WCo3II(H2O)2(CoIIW9O34)2]·46-48H2O (Co5W19) and Co(NO3)2·6H2O as starting materials in a hydrothermal reaction via a decomposition-reassembly route together with the rational adjustment of pH values. Co9W10 has been structurally characterized using single-crystal X-ray diffraction. Photocurrent response, band-gap (Eg) value, and the VB-XPS spectrum have been measured to reveal the semiconducting property of Co9W10. Furthermore, we synthesized x% PTh/Co9W10 composites (PTh = polythiophene, x = 0.5, 1, 2, 5) for photodegradation of tetracycline hydrochloride (TH) to evaluate the photocatalytic activities of title composites. Due to the optimal molar ratio of hybrids and matching energy levels, 2% PTh/Co9W10 composites show the best photocatalytic activities among these composites.
Collapse
Affiliation(s)
- Ke-Ke Guo
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Yan-Li Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Si-Meng Dong
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Feng-Yan Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Xin-Ye Jiang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Lin Xu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
13
|
Prabhavathy S, Dakshanamoorthy A. Visible light-induced Silver and Lanthanum co-doped BiVO4 nanoparticles for photocatalytic dye degradation of organic pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Jin Z, Li J, Liu D, Sun Y, Li X, Cai Q, Ding H, Gui J. Effective promotion of spacial charge separation of dual S-scheme (1D/2D/0D) WO3@ZnIn2S4/Bi2S3 heterojunctions for enhanced photocatalytic performance under visible light. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|