1
|
Ding H, Lei S, Yuan S, Dong Z, Jiang F, Wang W, Cao Y. Selective lithium extraction from spent lithium batteries: Mechanism and technology of (NH 4) 2SO 4 synergistic roasting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 202:114818. [PMID: 40262379 DOI: 10.1016/j.wasman.2025.114818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
In the context of carbon peaking and carbon neutrality, sulfidation roasting has emerged as a significant focus in the recycling of spent lithium-ion batteries. (NH4)2SO4 was utilized as a reducing agent in the research for the selective extraction of Li from the anode and cathode mixtures. The formation of roasting products was modulated, and the synergistic effects of sulfates were investigated. The results revealed that the leaching rate of Li was up to 96.95 % when the ratio of the anode and cathode mixtures to (NH4)2SO4 was 1.2:1, the reduction temperature of 600 °C, and the reduction time of 120 min, and the Ni, Co, and Mn were entered into the slag phase. The economic feasibility of (NH4)2SO4 and Na2SO4 was evaluated, and the results showed that (NH4)2SO4 was the better choice. The Characterization results indicated that the Li in the anode and cathode mixtures was transformed to highly water-soluble Li sulfate by (NH4)2SO4, enhancing the leaching rate of Li. This study proposed an efficient and low sulphur emission process for the selective extraction of Li by sulfates synergistic roasting process, transforming Li from the anode and cathode mixtures into water-soluble sulfate.
Collapse
Affiliation(s)
- Haoyuan Ding
- College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, PR China; State Key Laboratory of Mineral Processing, Shenyang 110819, PR China; National-local Joint Engineering Research Center of High-efficient Exploitation Technology for Refractory Iron Ore Resources, Shenyang 110819, PR China
| | - Shunlin Lei
- College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, PR China; State Key Laboratory of Mineral Processing, Shenyang 110819, PR China; National-local Joint Engineering Research Center of High-efficient Exploitation Technology for Refractory Iron Ore Resources, Shenyang 110819, PR China
| | - Shuai Yuan
- College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, PR China; State Key Laboratory of Mineral Processing, Shenyang 110819, PR China; National-local Joint Engineering Research Center of High-efficient Exploitation Technology for Refractory Iron Ore Resources, Shenyang 110819, PR China.
| | - Zaizheng Dong
- College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, PR China; State Key Laboratory of Mineral Processing, Shenyang 110819, PR China; National-local Joint Engineering Research Center of High-efficient Exploitation Technology for Refractory Iron Ore Resources, Shenyang 110819, PR China
| | - Feng Jiang
- College of Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Wenzhe Wang
- College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, PR China; State Key Laboratory of Mineral Processing, Shenyang 110819, PR China; National-local Joint Engineering Research Center of High-efficient Exploitation Technology for Refractory Iron Ore Resources, Shenyang 110819, PR China
| | - Yuda Cao
- College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, PR China; State Key Laboratory of Mineral Processing, Shenyang 110819, PR China; National-local Joint Engineering Research Center of High-efficient Exploitation Technology for Refractory Iron Ore Resources, Shenyang 110819, PR China
| |
Collapse
|
2
|
Hu QH, Tang DY, Xiang YL, Chen X, Lin J, Zhou QH. Magnetic ion-imprinted polyacrylonitrile-chitosan electro-spun nanofibrous membrane as recyclable adsorbent with selective heavy metal removal and antibacterial fouling in water treatment. Int J Biol Macromol 2023; 241:124620. [PMID: 37119910 DOI: 10.1016/j.ijbiomac.2023.124620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Water pollution has become one of the most concerned environmental issues on the worldwide scale. Due to the harmfulness of the heavy metal ions and microorganisms in wastewater, novel filtration membranes for water treatment are expected to simultaneously clear these pollutants. Herein, the electro-spun polyacrylonitrile (PAN) based magnetic ion-imprinted membrane (MIIM) were fabricated to achieve both selective removal of Pb(II) ions and excellent antibacterial efficiency. The competitive removal experiments showed that the MIIM displayed efficiently selective removal of Pb(II) (45.4 mg·g-1). Pseudo-second-order mode and Langmuir isotherm equation is well matched with the equilibrium adsorption. The MIIM showed sustained removal performance (~79.0 %) against Pb(II) ions after 7 adsorption-desorption cycles with negligible Fe ions loss of 7.3 %. Moreover, the MIIM exhibited excellent antibacterial properties that >90 % of E. coli and S. aureus were killed by the MIIM. In conclusion, the MIIM provides a novel technological platform for integration of multi-function with selective metal ions removal, excellent cycling reusability, and enhanced antibacterial fouling property, which can be potentially utilized as a promising adsorbent in actual treatment of polluted water.
Collapse
Affiliation(s)
- Qiu-Hui Hu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - De-Yu Tang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Ya-Li Xiang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Xiao Chen
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Juan Lin
- School of Biomedical Sciences and Technology, Chengdu Medical College, Xindu Road No.783, Chengdu, Sichuan 610500, China.
| | - Qing-Han Zhou
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
3
|
Wang X, Li P, Wang G, Zhao L, Cheng H. Preparation and permeation recognition mechanism of Cr(vi) ion-imprinted composite membranes. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
The Cr(vi) ion-imprinted composite membranes (Cr(vi)-IICMs) were prepared by using the surface imprinting method. The template ion was Cr(vi), the functional monomer was 4-vinylpyridine (4-VP), and the nylon filter membrane (nylon-6) was the support membrane. Non-imprinted composite membranes (NICMs) were prepared under the same conditions as the corresponding Cr(vi)-IICM. The adsorption effect of the imprinted membrane can reach 2.4 times that of the corresponding non-imprinted membrane. Meanwhile, the adsorption quantity of Cr(vi)-IICM was 34.60 μmol·g−1. The physical characteristics of membranes were confirmed by Brunauer–Emmett–Teller and scanning electron microscopy. Inductively coupled plasma emission spectrometry was used to analyze their adsorption properties and permeation selectivity. Cr(vi)-IICM and NICM were both mesoporous materials from the structural characterization and performance test results. Their adsorption behavior conformed to the Langmuir isotherm adsorption model. The permeation recognition mechanism of Cr(vi)-IICM was the Piletsky’s gate model. The IICM still has excellent permeability selectivity to Cr(vi) in the presence of competitive ions. The results provided a reference for the isolation and enrichment of Cr(vi).
Collapse
Affiliation(s)
- Xin Wang
- Faculty of Science, Kunming University of Science and Technology , Kunming 650500 , China
| | - Peng Li
- Faculty of Science, Kunming University of Science and Technology , Kunming 650500 , China
| | - Guifang Wang
- Faculty of Science, Kunming University of Science and Technology , Kunming 650500 , China
| | - Li Zhao
- Faculty of Science, Kunming University of Science and Technology , Kunming 650500 , China
| | - Huiling Cheng
- Faculty of Science, Kunming University of Science and Technology , Kunming 650500 , China
| |
Collapse
|
4
|
Ostovan A, Arabi M, Wang Y, Li J, Li B, Wang X, Chen L. Greenificated Molecularly Imprinted Materials for Advanced Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203154. [PMID: 35734896 DOI: 10.1002/adma.202203154] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Molecular imprinting technology (MIT) produces artificial binding sites with precise complementarity to substrates and thereby is capable of exquisite molecular recognition. Over five decades of evolution, it is predicted that the resulting host imprinted materials will overtake natural receptors for research and application purposes, but in practice, this has not yet been realized due to the unsustainability of their life cycles (i.e., precursors, creation, use, recycling, and end-of-life). To address this issue, greenificated molecularly imprinted polymers (GMIPs) are a new class of plastic antibodies that have approached sustainability by following one or more of the greenification principles, while also demonstrating more far-reaching applications compared to their natural counterparts. In this review, the most recent developments in the delicate design and advanced application of GMIPs in six fast-growing and emerging fields are surveyed, namely biomedicine/therapy, catalysis, energy harvesting/storage, nanoparticle detection, gas sensing/adsorption, and environmental remediation. In addition, their distinct features are highlighted, and the optimal means to utilize these features for attaining incredibly far-reaching applications are discussed. Importantly, the obscure technical challenges of the greenificated MIT are revealed, and conceivable solutions are offered. Lastly, several perspectives on future research directions are proposed.
Collapse
Affiliation(s)
- Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|