1
|
Tu X, Liu Y, Wang K, Ding Z, Xu X, Lu T, Pan L. Ternary-metal Prussian blue analogues as high-quality sodium ion capturing electrodes for rocking-chair capacitive deionization. J Colloid Interface Sci 2023; 642:680-690. [PMID: 37031475 DOI: 10.1016/j.jcis.2023.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/11/2023]
Abstract
Prussian blue analogs (PBAs) have gained much attention in the capacitive deionization (CDI) field because of their rigid open structure and good energy storage capacity. However, their desalination performance is still to be improved for practical application. Herein, we reported the NiCoFe ternary-metal PBAs materials and explored their application as Na+ capturing electrode in rocking-chair capacitive deionization (RCDI) system. On the one hand, the introduction of Ni2+ into CoFe PBA can effectively reduce the lattice changes in the (dis)charging process.On the other hand, the RCDI system with symmetrical structure could avoid the performance deficiency caused by the unbalanced capacity of common HCDI system. Due to the rationalized RCDI cell configuration and ternary-metal PBAs with improved stability, the NiCoFe-PBAs-based RCDI exhibits amazing desalination performance with maximum capacity of 131.4 mg·g-1 and rate of 0.46 mg·g-1·s-1 as well as optimum stability with 90.7 % capacity retention over 300 cycles, surpassing those of PBAs based CDI system reported previously. The special strategy in this work offers inspiration via optimizing the cell structure and electrode materials for the promising development of CDI systems.
Collapse
Affiliation(s)
- Xubin Tu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Kai Wang
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Zibiao Ding
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
2
|
Hybrid of Pyrazine based π-conjugated Organic Molecule and 2D MXene for Fast and Efficient Hybrid Capacitive Deionization. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
3
|
Gečė G, Pilipavičius J, Traškina N, Drabavičius A, Vilčiauskas L. Solvothermal Engineering of NaTi 2(PO 4) 3 Nanomorphology for Applications in Aqueous Na-Ion Batteries. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:3429-3436. [PMID: 36910249 PMCID: PMC9997200 DOI: 10.1021/acssuschemeng.2c06732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Aqueous Na-ion batteries are among the most discussed alternatives to the currently dominating Li-ion battery technology, in the area of stationary storage systems because of their sustainability, safety, stability, and environmental friendliness. The electrochemical properties such as ion insertion kinetics, practical capacity, cycling stability, or Coulombic efficiency are strongly dependent on the structure, morphology, and purity of an electrode material. The selection and optimization of materials synthesis route in many cases allows researchers to engineer materials with desired properties. In this work, we present a comprehensive study on size- and shape-controlled hydro(solvo)thermal synthesis of NaTi2(PO4)3 nanoparticles. The effects of different alcohol/water synthesis media on nanoparticle phase purity, morphology, and size distribution are analyzed. Water activity in the synthesis media of different alcohol solutions is identified as the key parameter governing the nanoparticle phase purity, size, and shape. The careful engineering of NaTi2(PO4)3 nanoparticle morphology allows control of the electrochemical performance and degradation of these materials as aqueous Na-ion battery electrodes.
Collapse
|
4
|
Turning waste into valuables: In situ deposition of polypyrrole on the obsolete mask for Cr(VI) removal and desalination. Sep Purif Technol 2023; 306:122643. [PMID: 36406342 PMCID: PMC9661547 DOI: 10.1016/j.seppur.2022.122643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
The global mask consumption has been exacerbated because of the coronavirus disease 2019 (COVID-19) pandemic. Simultaneously, the traditional mask disposal methods (incineration and landfill) have caused serious environmental pollution and waste of resources. Herein, a simple and green mass-production method has been proposed to recycle carbon protective mask (CPM) into the carbon protective mask/polydopamine/polypyrrole (CPM/PDA/PPy) composite by in situ polymerization of PPy. The CPM/PDA/PPy composite was used for the removal of Cr(VI) and salt ions to produce clean water. The synergistic effect of PPy and the CPM improved the removal capability of Cr(VI). The CPM/PDA/PPy composite provided high adsorption capacity (358.68 mg g-1) and economic value (811.42 mg $-1). Consequently, the CPM/PDA/PPy (cathode) was combined with MnO2 (anode) for desalination in CDI cells, demonstrated excellent desalination capacity (26.65 mg g-1) and ultrafast salt adsorption rate (6.96 mg g-1 min-1), which was higher than conventional CDI cells. Our work proposes a new low-carbon strategy to recycle discarded masks and demonstrates their utilization in Cr(VI) removal and seawater desalination.
Collapse
|
5
|
Liu Q, Wang N, Xie B, Xiao D. Improved U(VI) electrosorption performance of hierarchical porous heteroatom-doped electrode based on double-template method. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Al Kiey SA, Abdelhamid HN. Metal-organic frameworks (MOFs)-derived Co3O4@N-doped carbon as an electrode materials for supercapacitor. JOURNAL OF ENERGY STORAGE 2022; 55:105449. [DOI: 10.1016/j.est.2022.105449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Xu D, Wang W, Zhu M, Li C. Carbon nanotubes composite embedded with silver nanoparticles as chloride storage electrode for high-capacity desalination batteries. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Liu R, Luo J, Yao S, Yang Y. Three-dimensional lattice Boltzmann simulation of reactive transport and ion adsorption processes in battery electrodes of cation intercalation desalination cells. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Li Y, Yin Y, Xie F, Zhao G, Han L, Zhang L, Lu T, Amin MA, Yamauchi Y, Xu X, Zhu G, Pan L. Polyaniline coated MOF-derived Mn 2O 3 nanorods for efficient hybrid capacitive deionization. ENVIRONMENTAL RESEARCH 2022; 212:113331. [PMID: 35472462 DOI: 10.1016/j.envres.2022.113331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Mn-based oxides are efficient pseudocapacitive electrode materials and have been investigated for capacitive deionization (CDI). However, their poor conductivity seriously affects their desalination performance. In this work, polyaniline coated Mn2O3 nanorods (PANI/Mn2O3) are synthesized by oxidizing a Mn-based metal organic framework (MOF) and subsequent in-situ chemical polymerization. The polyaniline not only acts as a conductive network for faradaic reactions of Mn2O3, but also enhances the desalination rate. PANI/Mn2O3 has a specific capacitance of 87 F g-1 (at 1 A g-1), superior to that of Mn2O3 nanorod (52 F g-1 at 1 A g-1). The hybrid CDI cell constructed with a PANI/Mn2O3 cathode and an active carbon anode shows a high desalination capacity of 21.6 mg g-1, superior recyclability with only 11.3% desalination capacity decay after 30 desalination cycles and fast desalination rate of 2.2 mg g-1 min-1. PANI/Mn2O3 is a potential candidate for high performance CDI applications.
Collapse
Affiliation(s)
- Yanjiang Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Yufeng Yin
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Fengting Xie
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Guangzhen Zhao
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Lu Han
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Li Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China.
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
10
|
Cai Y, Zhang L, Fang R, Wang Y, Wang J. Maximized ion accessibility in the binder-free layer-by-layer MXene/CNT film prepared by the electrophoretic deposition for rapid hybrid capacitive deionization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Tang J, Chen Z, Chen Y, Xu X, Zhu J, Lu T, Pan L. In situ constructed
Ti
3
C
2
T
x
MXene
/polypyrrole composite with enhanced sodium storage capacity for efficient hybrid capacitive deionization. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jian Tang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance East China Normal University Shanghai China
| | - Zeqiu Chen
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance East China Normal University Shanghai China
| | - Yaoyu Chen
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance East China Normal University Shanghai China
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science Tsukuba Japan
| | - Jing Zhu
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance East China Normal University Shanghai China
| | - Ting Lu
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance East China Normal University Shanghai China
| | - Likun Pan
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance East China Normal University Shanghai China
| |
Collapse
|
12
|
Zhang Y, Feng X, Wang Y, Shan W, Lou Z, Xiong Y. In situ anchor of Na 2Ti 3O 7 in nitrogen-rich carbon hollow red blood cell-like structure as a 0D-3D hierarchical electrode material for efficient electrochemical desalination. Chem Sci 2022; 13:4545-4554. [PMID: 35656142 PMCID: PMC9019914 DOI: 10.1039/d1sc06476b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Reasonable design of the structure and complementary compounding of electrode materials is helpful to enhance capacitive deionization (CDI) performance. Herein, a novel 0D-3D hierarchical electrode material containing Na2Ti3O7 nanoparticles anchored at hollow red blood cell (HRBC)-like nitrogen-rich carbon (HRBC-NTO/N-C-60) was prepared via selective protection, pyrolysis, and alkalization. Specifically, a HRBC-like NH2-MIL-125-based material (HRBC-MOF-60) was first constructed by a selective protection approach of tannic acid (TN), which addresses the shortcomings of using sacrificial templates or corrosive agents. Afterwards, HRBC-NTO/N-C-60 was obtained in situ by annealing and alkalization of HRBC-MOF-60. The nitrogen-rich carbon with a HRBC-like structure has the ability to rapidly transport electrons, and its porous structure enables remarkable charge transfer. Benefiting from the grafted 3D N-doped porous carbon with a HRBC-like structure, well-dispersed 0D Na2Ti3O7 nanoparticles, and satisfactory bonding effects, HRBC-NTO/N-C-60 exhibited high specific capacitance and fast ionic and electronic diffusion kinetics. Moreover, HRBC-NTO/N-C-60 was well-suited for desalination by functioning as a cathode material for capacitive deionization (CDI), and delivering a high desalination capacity of 66.8 mg g-1 in 200 mg L-1 NaCl solution at 1.4 V. This work introduces an excellent high-performance candidate for electrochemical deionization as well as affording afflatus for accurately inventing OD-3D hierarchical materials with hollow structures.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University Shenyang 110036 P. R. China
| | - Xiaogeng Feng
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University Shenyang 110036 P. R. China
| | - Yuejiao Wang
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University Shenyang 110036 P. R. China
| | - Weijun Shan
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University Shenyang 110036 P. R. China
| | - Zhenning Lou
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University Shenyang 110036 P. R. China
| | - Ying Xiong
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University Shenyang 110036 P. R. China
| |
Collapse
|
13
|
Datar SD, Mane R, Jha N. Recent progress in materials and architectures for capacitive deionization: A comprehensive review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10696. [PMID: 35289462 DOI: 10.1002/wer.10696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Capacitive deionization is an emerging and rapidly developing electrochemical technique for water desalination across the globe with exponential growth in publications. There are various architectures and materials being explored to obtain utmost electrosorption performance. The symmetric architectures consist of the same material on both electrodes, while asymmetric architectures have electrodes loaded with different materials. Asymmetric architectures possess higher electrosorption performance as compared with that of symmetric architectures owing to the inclusion of either faradaic materials, redox-active electrolytes, or ion specific pre-intercalation material. With the materials perspective, faradaic materials have higher electrosorption performance than carbon-based materials owing to the occurrence of faradaic reactions for electrosorption. Moreover, the architecture and material may be tailored in order to obtain desired selectivity of the target component and heavy metal present in feed water. In this review, we describe recent developments in architectures and materials for capacitive deionization and summarize the characteristics and salt removal performances. Further, we discuss recently reported architectures and materials for the removal of heavy metals and radioactive materials. The factors that affect the electrosorption performance including the synthesis procedure for electrode materials, incorporation of additives, operational modes, and organic foulants are further illustrated. This review concludes with several perspectives to provide directions for further development in the subject of capacitive deionization. PRACTITIONER POINTS: Capacitive deionization (CDI) is a rapidly developing electrochemical water desalination technique with exponential growth in publications. Faradaic materials have higher salt removal capacity (SAC) because of reversible redox reactions or ion-intercalation processes. Combination of CDI with other techniques exhibits improved selectivity and removal of heavy metals. Operational parameters and materials properties affect SAC. In future, comprehensive experimentation is needed to have better understanding of the performance of CDI architectures and materials.
Collapse
Affiliation(s)
- Shreerang D Datar
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| | - Rupali Mane
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| | - Neetu Jha
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
14
|
Three-dimensional Prussian blue nanoflower as a high-performance sodium storage electrode for water desalination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Liu D, Xu S, Cai Y, Wang Y, Guo J, Li Y. A coupling technology of capacitive deionization and carbon-supported petal-like VS2 composite for effective and selective adsorption of lead (II) ions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Wang S, Li Z, Wang G, Wang Y, Ling Z, Li C. Freestanding Ti 3C 2T x MXene/Prussian Blue Analogues Films with Superior Ion Uptake for Efficient Capacitive Deionization by a Dual Pseudocapacitance Effect. ACS NANO 2022; 16:1239-1249. [PMID: 34941266 DOI: 10.1021/acsnano.1c09036] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exploring and designing high-performance Faradaic electrode materials is of great significance to enhance the desalination performance of hybrid capacitive deionization (HCDI). Herein, open and freestanding films (MXene/Prussian blue analogues (PBAs), specifically, MXene/NiHCF and MXene/CuHCF) were prepared by vacuum filtration of a mixed solution of PBAs nanoparticles and a Ti3C2Tx MXene dispersion and directly used as HCDI electrodes. The conductive MXene nanosheets bridge the PBAs nanoparticles to form a three-dimensional (3D) conductive network structure, which can accelerate the salt ion and electron diffusion/transport kinetics for HCDI. Additionally, the PBAs nanoparticles can prevent the restacking of MXene nanosheets, expand their interlayer spacing, and facilitate the rapid diffusion and storage of ions. Benefiting from the dual pseudocapacitance and synergistic effect of PBAs and MXene, the obtained MXene/PBAs films show superior properties, with a high desalination capacity (85.1 mg g-1 for the MXene/NiHCF film and 80.4 mg g-1 for the MXene/CuHCF film) and an ultrafast salt-removal rate, much higher than those of other Faradaic electrodes. The synergistic effect, the adsorption of Na+ ions, and the enhanced conductivity of MXene/PBAs films were demonstrated through first-principles calculations. This paper offers a simple and convenient method for the design of freestanding HCDI electrodes and promotes the rapid development of HCDI technology.
Collapse
Affiliation(s)
- Shiyong Wang
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, PR China
| | - Zhuolin Li
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, PR China
| | - Gang Wang
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, PR China
| | - Yuwei Wang
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, PR China
| | - Zheng Ling
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Changping Li
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, PR China
| |
Collapse
|
17
|
Wang J, Zhang D, Hu X, Sun T. A binder-free δ-MnO 2@reduced graphene oxide composite film as a bi-functional electrode for aqueous rechargeable sodium-ion batteries and hybrid capacitive deionization. NEW J CHEM 2022. [DOI: 10.1039/d2nj00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The freestanding δ-MnO2@rGO/CC electrode exhibits stable operation performance for both ASIBs and HCDI.
Collapse
Affiliation(s)
- Jun Wang
- College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Daile Zhang
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaomin Hu
- College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Ting Sun
- College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
18
|
Liu Y, Du X, Wang Z, Wang L, Liu Z, Shi W, Zheng R, Dou X, Zhu H, Yuan X. Layered double hydroxide coated electrospun carbon nanofibers as the chloride capturing electrode for ultrafast electrochemical deionization. J Colloid Interface Sci 2021; 609:289-296. [PMID: 34896829 DOI: 10.1016/j.jcis.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
Slow desalination kinetics and poor durability of the electrodes are two key limitations of electrochemical deionization (EDI) that are considered to be the next generation of capacitive desalination (CDI). Herein, we report the design of a high-efficiency chloride removal electrode material for accelerating the desalination kinetics and concurrently improving the durability of EDI, which is based on coating NiMn-Cl layered double hydroxides (LDHs) on the surface of electrospun carbon nanofibers (CNFs@LDHs). The salient features of the as-developed CNFs@LDHs are that applying layer-structured LDHs with abundant redox-active sites to accelerate the pseudo-capacitive ion storage via fast ion intercalation/deintercalation, and leveraging the rigid CNF backbone to strengthen its durability by preventing the potential aggregation of LDHs. As expected, the CNFs@LDH based EDI system displays an ultrafast desalination rate of 0.51 mg g-1 s-1 and outstanding long-term stability (only 10.66 % desalination capacity reduction after 35 cycles), which is achieved without sacrificing its excellent desalination capacity (72.04 mg g-1). This work could be inspirational for the future design of ultrafast yet durable EDI approaching industrial desalination applications.
Collapse
Affiliation(s)
- Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xin Du
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Ziping Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang, Shandong 262700, China
| | - Lihao Wang
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Zizhen Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Wenxue Shi
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Runzhe Zheng
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xinyue Dou
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Haiguang Zhu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|