1
|
Kumar S, Verma YK. Wound healing by enhancing cell proliferation: a thermoreversible formulation containing raloxifene. Cell Tissue Bank 2025; 26:22. [PMID: 40272605 DOI: 10.1007/s10561-025-10171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025]
Abstract
The challenge of ineffective wound healing, leading to chronic conditions necessitates the development of novel therapeutics strategies. Currently, a plethora of ailments have been researched and marketed globally to accelerate angiogenesis, re-epithelization, collagen synthesis, and proliferation. However, clinical translation remains challenging and requires rigorous pre- and post-clinical screening. Here, we have developed a formulation encapsulating Raloxifene, a repurposed drug, aimed to induce accelerated wound healing. Four different formulations (Forms 1, 2, 3, and 4) incorporating alginate, poloxamer 407 (P407), LiCl, and fetal bovine serum were prepared. Formulations were characterized by scanning electron microscopy, Fourier Transformation infrared spectroscopy, and rheology. In vitro assessments encompassing cell viability, cell migration, and drug release profile were conducted, subsequently, the in vivo wound healing potential was evaluated in Sprague Dawley (SD) rats. In results, we observed significant (p-value<0.05) wound healing by Form 3 at 14th due to up-regulation of TGFꞵ, Col-I and GSK3β genes. The histology results showed complete development of epidermis, endoderm and collagen fibers by Form 3, leading to complete healing. This formulation shows promise for clinical application in accelerated wound healing processes.
Collapse
Affiliation(s)
- Subodh Kumar
- Regenerative Biology Research Lab, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Yogesh Kumar Verma
- Regenerative Biology Research Lab, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
2
|
Pfleger T, Ortmayr K, Steiner K, Zaher R, Seiser S, Elbe-Bürger A, Heiss E, Klang V. Radical scavenging effect of skin delivery systems using Korean red ginseng extract and assessment of their biocompatibility with human primary dermal fibroblasts and HaCaT keratinocytes. Int J Pharm 2025; 674:125477. [PMID: 40097056 DOI: 10.1016/j.ijpharm.2025.125477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Korean red ginseng (KRG) extract is proposed for cosmetic use, but no data on biological effects of KRG-loaded vehicles exist. The study aimed to optimize new multi- and monophase vehicles for KRG extract delivery, assess their biocompatibility and evaluate their radical scavenging effect in vitro. Storage stability of oil-in-water nanoemulsions (NEs) and hydroalcoholic gels (2 % w/w KRG) was assessed over twelve weeks using dynamic light scattering, rheology and pH measurements. Release profiles of ginsenosides Rb1 (more hydrophilic) and Rg1 (moderately lipophilic) through a cellulose membrane were also investigated employing Franz diffusion cells. Antioxidant potential and biocompatibility were assessed via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and cell viability assays. Vehicles remained stable over twelve weeks at 8 °C (NEs Dh stable, gel viscosity + 3.5 %). Diffusion studies showed higher release of Rg1 vs. Rb1 (7.10 vs. 1.39 µg/cm-2 after 28 h). KRG-formulations demonstrated good biocompatibility with primary human dermal fibroblasts and HaCaT keratinocytes (72-94 % viability). Radical scavenging capacity of KRG extract did not differ between pure and incorporated form and was lower than that of a Hypericum extract or ascorbic acid. Results render KRG-formulations a potentially promising alternative to conventional antioxidants used in daily products.
Collapse
Affiliation(s)
- Tanja Pfleger
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Karin Ortmayr
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmacognosy, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Katja Steiner
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Rawan Zaher
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Saskia Seiser
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Adelheid Elbe-Bürger
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Elke Heiss
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmacognosy, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Gu Y, Chen W, Chen L, Liu M, Zhao K, Wang Z, Yu H. Electrochemical coalescence of oil-in-water droplets in microchannels of TiO 2-x/Ti anode via polarization eliminating electrostatic repulsion and ·OH oxidation destroying oil-water interface film. WATER RESEARCH 2024; 255:121550. [PMID: 38579590 DOI: 10.1016/j.watres.2024.121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Electrochemistry is a sustainable technology for oil-water separation. In the common flat electrode scheme, due to a few centimeters away from the anode, oil droplets have to undergo electromigration to and electrical neutralization at the anodic surface before they coalesce into large oil droplets and rise to water surface, resulting in slow demulsification and easy anode fouling. Herein, a novel strategy is proposed on basis of a TiO2-x/Ti anode with microchannels to overcome these problems. When oil droplets with several microns in diameter flow through channels with tens of microns in diameter, the electromigration distance is shortened by three orders of magnitude, electrical neutralization is replaced by polarization coupling ·OH oxidation. The new strategy was supported by experimental results and theoretical analysis. Taking the suspension containing emulsified oil as targets, COD value dropped from initial 500 mg/L to 117 mg/L after flowing through anodic microchannels in only 58 s of running time, and the COD removal was 21 times higher than that for a plate anode. At similar COD removal, the residence time was 48 times shorter than that of reported flat electrodes. Coalescences of oil droplets in microchannels were observed by a confocal laser scanning microscopy. This new strategy opens a door for using microchannel electrodes to accelerate electrochemical coalescence of oil-in-water droplets.
Collapse
Affiliation(s)
- Yuwei Gu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Weiqiang Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Li Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Meng Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Kun Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhichen Wang
- Suzhou Guolong Technology Development Co., Ltd, Suzhou 215217, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Bahadi SA, Drmosh QA, Onaizi SA. Adsorptive removal of organic pollutants from aqueous solutions using novel GO/bentonite/MgFeAl-LTH nanocomposite. ENVIRONMENTAL RESEARCH 2024; 248:118218. [PMID: 38266892 DOI: 10.1016/j.envres.2024.118218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
The contamination of water with organic pollutants such as dyes and phenols is a serious environmental problem, requiring effective treatment methods. In the present study, a novel nanocomposite was synthesized by intercalating graphene oxide and bentonite clay into MgFeAl-layered triple hydroxide (GO/BENT/LTH), which was characterized using different techniques. The adsorption efficacy of the GO/BENT/LTH nanocomposite was assessed via the removal of two harmful organic water pollutants, namely methyl orange (MO) and 2-nitrophenol (2NP). The obtained results revealed that the maximum adsorption capacities (qmax) of MO and 2NP reached 3106.3 and 2063.5 mg/g, respectively, demonstrating the excellent adsorption performance of the nanocomposite. Furthermore, this study examined the effects of contact time, initial MO and 2NP concentrations, pH, and temperature of the wastewater samples on the adsorptive removal of MO and 2NP by the GO/BENT/LTH nanocomposite. The pH, zeta potential, and FTIR investigations suggested the presence of more than one adsorption mechanism. Thermodynamic investigations elucidated the exothermic nature of the adsorption of MO and 2NP onto the GO/BENT/LTH nanocomposite, with MO adsorption being more sensitive to temperature change. Additionally, regeneration studies revealed a marginal loss in the MO and 2NP removal with the repetitive use of the GO/BENT/LTH nanocomposite, demonstrating its reusability. Overall, the findings of this study reveal the promise of the GO/BENT/LTH nanocomposite for effective water decontamination.
Collapse
Affiliation(s)
- Salem A Bahadi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31216, Saudi Arabia
| | - Q A Drmosh
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31216, Saudi Arabia
| | - Sagheer A Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31216, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31216, Saudi Arabia.
| |
Collapse
|
5
|
BinMakhashen GM, Bahadi SA, Al-Jamimi HA, Onaizi SA. Ensemble meta machine learning for predicting the adsorption of anionic and cationic dyes from aqueous solutions using Polymer/graphene/clay/MgFeAl-LTH nanocomposite. CHEMOSPHERE 2024; 349:140861. [PMID: 38056713 DOI: 10.1016/j.chemosphere.2023.140861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Adsorption is one of the most promising wastewater treatment methods due to its simplicity and efficacy at ambient temperature and pressure. However, the technical and economic feasibility of this process largely depends on the performance of the utilized adsorbents. In this study, a promising adsorbent made of polyethyleneimine, graphene oxide (GO), bentonite, and MgFeAl-layered triple hydroxide (MgFeAl-LTH) has been synthesized and characterized. The results revealed that the synthesized nanocomposite (abbreviated as PGB-LTH) possesses good porosity and crystallinity. The adsorption performance of the PGB-LTH nanocomposite towards two harmful water pollutants (i.e., methyl orange (MO) and crystal violet (CV)) was investigated, and the results revealed that the nanocomposite outperforms its parental materials (i.e., GO, bentonite, and MgFeAl-LTH). The maximum adsorption capacity (qmax) of MO and CV onto the nanocomposite could reach 1666.7 and 1250.0 mg/g, respectively, as predicted using the Langmuir adsorption isotherm. Additionally, the PGB-LTH nanocomposite is highly reusable with an insignificant decline in performance upon repetitive use. In terms of thermodynamics, MO adsorption onto the nanocomposite is exothermic while CV adsorption is endothermic despite that both dyes adsorb spontaneously as revealed by the negative values of the Gibbs free energy change at all the examined temperatures. The generated adsorption data were utilized for constructing and assessing ensemble meta-machine learning techniques aimed at cost-effective simulation and prediction of the proposed adsorption method. Bagging and boosting methods were developed and evaluated intensively using the obtained adsorption data. The Extra Trees model achieved promising results as evidenced by the high correlation coefficient of 99% as well as low computed RMSE and MAE errors of 11.42 and 5.11, respectively, during the testing phase. These results demonstrate the model strong capability to effectively simulate and predict the adsorption process in question.
Collapse
Affiliation(s)
- Galal M BinMakhashen
- Computer Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31216, Saudi Arabia; Research Excellence, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Salem A Bahadi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31216, Saudi Arabia
| | - Hamdi A Al-Jamimi
- Computer Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31216, Saudi Arabia; Research Excellence, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Sagheer A Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31216, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31216, Saudi Arabia.
| |
Collapse
|
6
|
Meng CE, Sharifah Robiah Mohamad CW, Mohd Nasir NF, Fhan KS, Liang OH, Jian TX, Yee LK, Yeow YK, Mohd Tarmizi EZ, Mohd Roslan MR, Baharuddin SA. Mineral composition, crystallinity and dielectric evaluation of Bamboo Salt, Himalaya Salt, and Ba'kelalan salt content. Heliyon 2024; 10:e23847. [PMID: 38332888 PMCID: PMC10851306 DOI: 10.1016/j.heliyon.2023.e23847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024] Open
Abstract
The mineral composition, crystallinity, and dielectric properties of salts can provide valuable insights into the quality and suitability of different types of salt for various applications. In this study, comprehensive analysis of the X-Ray Diffraction (XRD), X-ray fluorescence (XRF) and dielectric analysis of the Ba'kelalan salt, Himalaya salt and Bamboo salt have been investigated. The mineral composition of these salts, encompassing vital elements such as iodine and other trace minerals, significantly influences the salt's nutritional profile and overall excellence. Nonetheless, gauging the dispersion and density of these minerals poses difficulties due to conventional techniques that can be arduous, damaging, and expensive. Sample preparation is carried out before conducting X-ray diffraction (XRD), X-ray fluorescence (XRF), and dielectric analysis. XRD measurements are performed using the Bruker D2 Phaser to identify crystalline material phases. XRD operates on the principle of constructive X-ray interference within crystalline samples. For elemental analysis across a broad spectrum of materials, XRF is employed. Elemental peaks are scanned, starting from the lowest to the highest angle of incidence. The X-ray intensity at characteristic peaks is compared to the standard series. Dielectric spectroscopy analysis examines the dielectric behaviour of Ba'kelalan salt, Himalaya salt, and Bamboo salt. The setup involves a vector network analyser (VNA) paired with an open-ended coaxial probe, utilizing the microwave method. This approach ensures rapid, efficient, and non-destructive measurements of dielectric constants (ε') and loss factors (ε"). The dielectric permittivity spectra are acquired within the frequency range of 4 GHz-20 GHz. ε' of these salts increase with frequency. Meanwhile, ε" seem varies insignificantly over frequency. Mineral contents and crystallinity are the crucial factors lead to these responses. Based on the study, the quality and suitability of the selected salts for specific applications can be determined by considering their mineral composition, crystallinity, and dielectric properties in the context of the intended use. This gives an insight for some applications that may benefit from certain minerals or crystalline structures, others may require specific dielectric properties for effective use. Therefore, understanding these properties allows for decision-making in choosing the right type of salt for a given purpose, whether it's for foods, medical, industrial, healthcare, and technological applications.
Collapse
Affiliation(s)
- Cheng Ee Meng
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600, Malaysia
- Advanced Communication Engineering, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Kangar, 01000, Malaysia
- Sports Engineering Research Centre (SERC), Universiti Malaysia Perlis (UniMAP), Arau, 02600, Malaysia
| | | | - Nashrul Fazli Mohd Nasir
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600, Malaysia
- Sports Engineering Research Centre (SERC), Universiti Malaysia Perlis (UniMAP), Arau, 02600, Malaysia
| | - Khor Shing Fhan
- Faculty of Electrical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600, Malaysia
| | - Ong Hong Liang
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600, Malaysia
| | - Tan Xiao Jian
- Sports Engineering Research Centre (SERC), Universiti Malaysia Perlis (UniMAP), Arau, 02600, Malaysia
- Centre for Multimodal Signal Processing, Tunku Abdul Rahman University of Management and Technology (TAR UMT), Jalan Genting Kelang, Setapak, Kuala Lumpur, 53300, Malaysia
- Department of Electrical and Electronics Engineering, Faculty of Engineering and Technology, Tunku Abdul Rahman University of Management and Technology (TAR UMT), Jalan Genting Kelang, Setapak, Kuala Lumpur, 53300, Malaysia
| | - Lee Kim Yee
- Lee Kong Chian Faculty of Engineering & Science, Sungai Long Campus, Tunku Abdul Rahman University, Jalan Sungai Long, Kajang, Cheras, Sungai Long City, 43000, Malaysia
| | - You Kok Yeow
- Department of Communication Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Malaysia
| | - Emma Ziezie Mohd Tarmizi
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Mohd Riza Mohd Roslan
- Department of Engineering and Built Environment, Tunku Abdul Rahman University of Management and Technology, Penang Branch, Pulau Pinang, 11200, Malaysia
| | - Siti Aishah Baharuddin
- Department of Engineering and Built Environment, Tunku Abdul Rahman University of Management and Technology, Penang Branch, Pulau Pinang, 11200, Malaysia
| |
Collapse
|
7
|
Ao Y, He J, Chen K, Zhu M, Ye F, Shen L, Yang Y, Feng X, Zhang Z, Tang Y, Mi Y. Amine-functionalized cotton for the treatment of oily wastewater. ENVIRONMENTAL RESEARCH 2023; 237:116882. [PMID: 37574103 DOI: 10.1016/j.envres.2023.116882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Common commercial demulsifiers are typically made from ethylene oxide and propylene oxide. The production process is dangerous and complex, with poor adaptability and high cost. In this work, cotton modified with polyethylene polyamine was utilized as a demulsifier for the treatment of oily wastewater. The chemical structure and morphology of the as-prepared sample (CPN) were characterized by IR spectrum and SEM. The effect of CPN dosage, pH value, and salinity on the demulsification performance of oily wastewater was explored through the bottle tests. The results showed that the light transmittance of separated water was 81.7% and the corresponding deoiling rate was 98.5% when a CPN dosage of 25 mg/L was used at room temperature for 30 min. The interfacial properties were also systematically investigated, and the results indicated that CPN had better interfacial activity and a stronger reduction capability of interfacial tension compared to asphaltenes. The finding initiated and accelerated the demulsification process of oily wastewater. Based on the outstanding performance of this biomass-derived demulsifier, it shows promising potential for application in the treatment of oily wastewater.
Collapse
Affiliation(s)
- Yiling Ao
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Ji'an He
- CNPC Chuanqing Drilling Engineering Co. Ltd., Guanghan, 618300, PR China
| | - Keming Chen
- CNPC Chuanqing Drilling Engineering Co. Ltd., Guanghan, 618300, PR China
| | - Mingzhao Zhu
- The 3rd Oil Production Plant, PetroChina Changqing Oilfield Company, Yan'an, 717500, PR China
| | - Fan Ye
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Liwei Shen
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Ying Yang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Xuening Feng
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Zejun Zhang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Yuqi Tang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Yuanzhu Mi
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China.
| |
Collapse
|
8
|
Paulo LADO, Fernandes RN, Simiqueli AA, Rocha F, Dias MMDS, Minim VPR, Minim LA, Vidigal MCTR. Baru oil (Dipteryx alata vog.) applied in the formation of O/W nanoemulsions: A study of physical-chemical, rheological and interfacial properties. Food Res Int 2023; 170:112961. [PMID: 37316008 DOI: 10.1016/j.foodres.2023.112961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/18/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
The oil extracted from baru (Dipteryx alata Vog.) seeds is in bioactive compounds and it presents potential to be used in food and cosmetic industries. Therefore, this study aims to provide insights into the stability of baru oil-in-water (O/W) nanoemulsions. For this purpose, the effects of the ionic strength (0, 100 and 200 mM), pH (6, 7 and 8), and storage time (28 days) on the kinetic stability of these colloidal dispersions were evaluated. The nanoemulsions were characterized in terms of interfacial properties, rheology, zeta potential (ζ), average droplet diameter, polydispersity index (PDI), microstructure, and creaming index. In general, for samples, the equilibrium interfacial tension ranged from 1.21 to 3.4 mN.m-1, and the interfacial layer presented an elastic behavior with low dilatational viscoelasticity. Results show that the nanoemulsions present a Newtonian flow behavior, with a viscosity ranging from 1.99 to 2.39 mPa.s. The nanoemulsions presented an average diameter of 237-315 nm with a low polydispersity index (<0.39), and a ζ-potential ranging from 39.4 to 50.3 mV after 28 days of storage at 25 °C. The results obtained for the ζ-potential suggest strong electrostatic repulsions between the droplets, which is an indicative of relative kinetic stability. In fact, macroscopically, all the nanoemulsions were relatively stable after 28 days of storage, except the nanoemulsions added with NaCl. Nanoemulsions produced with baru oil present a great potential to be used in the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
| | - Raquel Nunes Fernandes
- Food Technology Department, Federal University of Viçosa (UFV), 36570-900 Viçosa, Brazil
| | - Andréa Alves Simiqueli
- Department of Pharmacy, Federal University of Juiz de Fora, Governador Valadares campus (UFJF-GV), 35032-620 Governador Valadares, MG, Brazil
| | - Felipe Rocha
- Food Technology Department, Federal University of Viçosa (UFV), 36570-900 Viçosa, Brazil
| | | | | | - Luis Antonio Minim
- Food Technology Department, Federal University of Viçosa (UFV), 36570-900 Viçosa, Brazil
| | | |
Collapse
|
9
|
Zhang Z, Wang Z, Zhang H, Wang Q, Tang Y, Qu Q, Shen L, Mi Y, Yan X. An ionic liquid demulsifier with double cationic centers and multiple hydrophobic chains. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Zaman H, Shah AUHA, Ali N, Zhou C, Khan A, Ali F, Tian CT, Bilal M. Magnetically recoverable poly (methyl methacrylate-acrylic acid)/iron oxide magnetic composites nanomaterials with hydrophilic wettability for efficient oil-water separation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115690. [PMID: 35834853 DOI: 10.1016/j.jenvman.2022.115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Due to the environmental and production problems of emulsion, it is important to efficiently separate oil-water emulsion to meet the refinery requirement and clean up oil spills. Synthesis of a universal demulsifier is not an easy task because the physical properties of crude oil vary, which makes its characterization and demulsification procedure difficult. To overcome this problem, hydrophilic and magnetically recoverable poly (methyl methacrylate-acrylic acid)/iron oxide magnetic composite nanoparticles ((P(MMA-AA)/Fe3O4 NPs) were developed as an efficient and economical demulsifier via soap-free emulsion polymerization. To characterize the magnetic composite NPs for their appropriate surface morphology and magnetic domain, TEM, FTIR, VSM, and TGA analyses were carried out. The newly synthesized NPs displayed good hydrophilic properties as they migrated quickly to the aqueous emulsion phase, which was also reassured by their water contact angle of 75°. They exhibit strong magnetic characteristics (20 amu/g) in the oil-water emulsion, makings the hydrophilic wettability capable and attractive to the external magnet. Experimental results revealed that the prepared magnetic composite NPs separated 99% of the water from stable emulsion in 30 min and could be recycled 8 times through magnetic separation. The recycled magnetic composite NPs maintain their hydrophilic wettability and efficiency in separating oil-water emulsion, making them economical and commercially viable. The migration of magnetic composite NPs to the aqueous phase in the stable emulsion with a strong magnetic domain explains the coalescence of emulsified water droplets and their quick separation from the stable emulsions through the external magnet.
Collapse
Affiliation(s)
- Hira Zaman
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Anwar Ul Haq Ali Shah
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan.
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Cao Zhou
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, Mansehra, 21300, KPK, Pakistan
| | - Chen Tian Tian
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
11
|
Ye F, Jiang X, Liu H, Ai G, Shen L, Yang Y, Feng X, Yuan H, Zhang Z, Mi Y, Yan X. Amine functional cellulose derived from wastepaper toward oily wastewater treatment and its demulsification mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Wang Y, Liu X, He Q, Wang X, Lu H, Guo F, Zhang Y, Wang W. Multifunctional natural sepiolite nanofibre composite demulsifiers for efficient purification of oils and dyes in simulated and actual wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Onaizi SA. Characteristics and pH-Responsiveness of SDBS–Stabilized Crude Oil/Water Nanoemulsions. NANOMATERIALS 2022; 12:nano12101673. [PMID: 35630894 PMCID: PMC9146945 DOI: 10.3390/nano12101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023]
Abstract
Nanoemulsions are colloidal systems with a wide spectrum of applications in several industrial fields. In this study, crude oil-in-water (O/W) nanoemulsions were formulated using different dosages of the anionic sodium dodecylbenzenesulfonate (SDBS) surfactant. The formulated nanoemulsions were characterized in terms of emulsion droplet size, zeta potential, and interfacial tension (IFT). Additionally, the rheological behavior, long-term stability, and on-demand breakdown of the nanoemulsions via a pH-responsive mechanism were evaluated. The obtained results revealed the formation of as low as 63.5 nm average droplet size with a narrow distribution (33–142 nm). Additionally, highly negative zeta potential (i.e., −62.2 mV) and reasonably low IFT (0.45 mN/m) were obtained at 4% SDBS. The flow-ability of the nanoemulsions was also investigated and the obtained results revealed an increase in the nanoemulsion viscosity with increasing the emulsifier content. Nonetheless, even at the highest SDBS dosage of 4%, the nanoemulsion viscosity at ambient conditions never exceeded 2.5 mPa·s. A significant reduction in viscosity was obtained with increasing the nanoemulsion temperature. The formulated nanoemulsions displayed extreme stability with no demulsification signs irrespective of the emulsifier dosage even after one-month shelf-life. Another interesting and, yet, surprising observation reported herein is the pH-induced demulsification despite SDBS not possessing a pH-responsive character. This behavior enabled the on-demand breakdown of the nanoemulsions by simply altering their pH via the addition of HCl or NaOH; a complete and quick oil separation can be achieved using this simple and cheap demulsification method. The obtained results reveal the potential utilization of the formulated nanoemulsions in oilfield-related applications such as enhanced oil recovery (EOR), well stimulation and remediation, well-bore cleaning, and formation fracturing.
Collapse
Affiliation(s)
- Sagheer A Onaizi
- Department of Chemical Engineering, Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31216, Saudi Arabia
| |
Collapse
|
14
|
Zhang X, Wang P, Xu Y, Wang J, Shi Y, Niu W, Song W, Liu R, Yu CY, Wei H. Facile synthesis and self-assembly behaviors of biodegradable amphiphilic hyperbranched copolymers with reducible poly(caprolactone) grafts. Polym Chem 2022. [DOI: 10.1039/d2py01112c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A reducible hydrophobic macromonomer, HEMA-g-PCL, developed herein provides a facile yet robust strategy for biodegradable amphiphilic hyperbranched copolymers.
Collapse
Affiliation(s)
- Xianshuo Zhang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Peipei Wang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Yaoyu Xu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Yunfeng Shi
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Wenxu Niu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Wenjing Song
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Ruru Liu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| |
Collapse
|