1
|
Huang H, Zhu J, Weng G, Li J, Zhao J. MXene-based nanocomposites: synthesis, optical properties, and biomedical applications. Mikrochim Acta 2025; 192:341. [PMID: 40332633 DOI: 10.1007/s00604-025-07181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025]
Abstract
With the discovery and in-depth research of 2D carbide/nitride MXene, MXene-based nanocomposites have attracted widespread attention due to their unique enhancement and synergistic effects, demonstrating tremendous application potential in the biomedical field. Hence, this review provides a comprehensive discussion of the synthesis methods, optical properties, and biomedical applications of MXene-based nanocomposites. Firstly, it discusses and compares various synthesis methods for MXenes and MXene-based nanocomposites, and categorizes the combination types based on surface engineering strategies and distinct properties. Subsequently, the optical properties of MXene-based nanocomposites are summarized, including localized surface plasmon resonance (LSPR), surface-enhanced Raman scattering (SERS), and photothermal conversion efficiency (PCE). Furthermore, this review provides an in-depth discussion of the applications of MXene-based nanocomposites in biosensors, optical therapeutics, and bioimaging. Finally, we thoroughly explore the challenges and opportunities for the future development of MXene-based nanocomposites, aiming to offer a feasible approach for the development of high-performance materials for biomedical applications.
Collapse
Affiliation(s)
- Hui Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Guojun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Junwu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
2
|
Liu CH, Xu L, Wang ZY, Han SJ, Zhou Y, Fu ML, Yuan B. Carbon Ink Enhanced Calcium Alginate-Based Hydrogel with Response Surface Methodology Optimized for Solar-Driven Salt-Tolerant Desalination. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59399-59411. [PMID: 39413406 DOI: 10.1021/acsami.4c15113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
The global shortage of freshwater resources is becoming more and more serious; therefore, it is necessary to obtain freshwater by desalinating seawater resources. Solar-driven interfacial photothermal evaporation, which is an environmentally friendly and energy-efficient technology, has been used to desalinate seawater for water purification and production. Herein, the IPCA hydrogel with abundant pores consisting of carbon ink as a photothermal conversion material and PU sponge loaded with calcium alginate as a water transport medium was successfully prepared and used to obtain portable water. The parameters of the synthesized IPCA are optimized by Response Surface Methodology analysis, and it was found that the IPCA exhibits a high evaporation efficiency of 3.779 kg m-2 h-1 and up to 95.98% of photothermal conversion capacity under one solar intensity. It maintains a high evaporation efficiency and salt resistance after 10 cycles of evaporation in actual seawater. Moreover, IPCA shows a high removal of various organic dye pollutants in wastewater. The results suggest a new approach for the preparation of simple, efficient, and green solar evaporators in practical application.
Collapse
Affiliation(s)
- Cai-Hua Liu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Lei Xu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Zhen-Yu Wang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Sheng-Jie Han
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - You Zhou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Ming-Lai Fu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, P. R. China
| |
Collapse
|
3
|
He X, Wu Z, Lu J, Liu J, Li B, Liu X, Tao W, Li Z. A Sunlight-Driven Self-Cleaning CuCo-MOF Composite Membrane for Highly Efficient Emulsion Separation and Water Purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402589. [PMID: 38881318 DOI: 10.1002/smll.202402589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 06/18/2024]
Abstract
The fouling phenomenon of membranes has hindered the rapid development of separation technology in wastewater treatment. The integration of materials into membranes with both excellent separation performance and self-cleaning properties still pose challenges. Here, a self-assembled composite membrane with solar-driven self-cleaning performance is reported for the treatment of complex oil-water emulsions. The mechanical robustness of the composite membrane is enhanced by the electrostatic attraction between chitosan and metal-organic frameworks (MOF) CuCo-HHTP as well as the crosslinking effect of glutaraldehyde. Molecular dynamics (MD) simulations also revealed the hydrogen bonding interaction between chitosan and CuCo-HHTP. The composite membrane of CuCo-HHTP-5@CS/MPVDF exhibits a high flux ranging from 700.6 to 2350.6 L∙m-2∙h-1∙bar-1 and excellent separation efficiency (>99.0%) for various oil-water emulsions, including crude oil, kerosene, and other light oils. The addition of CuCo-HHTP shows remarkable photothermal effects, thus demonstrating excellent solar-driven self-cleaning capability and antibacterial performance (with an efficiency of ≈100%). Furthermore, CuCo-HHTP-5@CS/MPVDF can activate peroxomonosulfate (PMS) under sunlight, quickly removing oil-fouling and dyes. Density functional theory (DFT) calculations indicate that the bimetallic sites of Cu and Co in CuCo-HHTP effectively promoted the activation of PMS. This study provides distinctive insights into the multifaceted applications of MOFs-derived photothermal anti-fouling composite membranes.
Collapse
Affiliation(s)
- Xuanting He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zixuan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jihan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jiaxiang Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Boyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaohui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wenquan Tao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
4
|
Meng L, Jian J, Yang D, Dan Y, Sun W, Ai Q, Zhang Y, Zhou H. Hydrophilicity and Pore Structure Enhancement in Polyurethane/Silk Protein-Bismuth Halide Oxide Composite Films for Photocatalytic Degradation of Dye. Int J Mol Sci 2024; 25:6653. [PMID: 38928359 PMCID: PMC11203534 DOI: 10.3390/ijms25126653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Polyurethane/silk protein-bismuth halide oxide composite films were fabricated using a blending-wet phase transformationin situsynthesis method. The crystal structure, micromorphology, and optical properties were conducted using XRD, SEM, and UV-Vis DRS characterize techniques. The results indicated that loaded silk protein enhanced the hydrophilicity and pore structure of the polyurethane composite films. The active species BiOX were observed to grow as nanosheets with high dispersion on the internal skeleton and silk protein surface of the polyurethane-silk protein film. The photocatalytic efficiency of BiOX/PU-SF composite films was assessed through the degradation of Rhodamine B under visible light irradiation. Among the tested films, the BiOBr/PU-SF composite exhibited the highest removal rate of RhB at 98.9%, surpassing the removal rates of 93.7% for the BiOCl/PU-SF composite and 85.6% for the BiOI/PU-SF composite. Furthermore, an active species capture test indicated that superoxide radical (•O2-) and hole (h+) species played a predominant role in the photodegradation process.
Collapse
Affiliation(s)
- Lingxi Meng
- School of Chemistry and Chemical Engineering, Hunan Engineering Research Center for Functional Film Materials, Hunan University of Science and Technology, Xiangtan 411201, China; (L.M.); (Y.D.); (Y.Z.)
| | - Jian Jian
- School of Chemistry and Chemical Engineering, Hunan Engineering Research Center for Functional Film Materials, Hunan University of Science and Technology, Xiangtan 411201, China; (L.M.); (Y.D.); (Y.Z.)
| | - Dexing Yang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (D.Y.); (W.S.); (Q.A.)
| | - Yixiao Dan
- School of Chemistry and Chemical Engineering, Hunan Engineering Research Center for Functional Film Materials, Hunan University of Science and Technology, Xiangtan 411201, China; (L.M.); (Y.D.); (Y.Z.)
| | - Weijie Sun
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (D.Y.); (W.S.); (Q.A.)
| | - Qiuhong Ai
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (D.Y.); (W.S.); (Q.A.)
| | - Yusheng Zhang
- School of Chemistry and Chemical Engineering, Hunan Engineering Research Center for Functional Film Materials, Hunan University of Science and Technology, Xiangtan 411201, China; (L.M.); (Y.D.); (Y.Z.)
| | - Hu Zhou
- School of Chemistry and Chemical Engineering, Hunan Engineering Research Center for Functional Film Materials, Hunan University of Science and Technology, Xiangtan 411201, China; (L.M.); (Y.D.); (Y.Z.)
| |
Collapse
|
5
|
Wang Q, Zhu F, Cheng H, Komarneni S, Ma J. Efficient activation of persulfate by Ti 3C 2 MXene QDs modified ZnFe 2O 4 for the rapid degradation of tetracycline. CHEMOSPHERE 2023; 328:138546. [PMID: 37019395 DOI: 10.1016/j.chemosphere.2023.138546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Mxene-based catalysts with specific interfacial characteristics are beneficial for photocatalytic applications. Herein, Ti3C2 MXene modified ZnFe2O4 nanocomposite materials were prepared for photocatalysis. The morphology and structure of the nanocmposites were characterized by scanning electron microscopy (SEM), High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), which revealed that Ti3C2 MXene as quantum dots (QDs) was uniformly distributed on the ZnFe2O4 surface. The Ti3C2 QDs modified ZnFe2O4 catalyst (ZnFe2O4/MXene-15%) under visible light achieved 87% degradation efficiency of tetracycline within 60 min when coupled with persulfate (PS) system. The initial solution pH, PS dosage and co-existing ions were found to be the main factors affecting the heterogeneous oxidation process, while quenching experiments showed that O2•- is the main oxidizing species in the removal of tetracycline in ZnFe2O4/MXene-PS system. In addition, the cyclic experiments suggested that ZnFe2O4/MXene had good stability and thus it may have practical applications in industry.
Collapse
Affiliation(s)
- Qi Wang
- School of Environmental Science and Engineering, Changzhou University, Jiangsu, 213164, China
| | - Fang Zhu
- School of Environmental Science and Engineering, Changzhou University, Jiangsu, 213164, China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi, 545006, China
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Materials Research Institute, 204 Materials Research Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Jianfeng Ma
- School of Environmental Science and Engineering, Changzhou University, Jiangsu, 213164, China.
| |
Collapse
|
6
|
Wang C, Ye J, Liang L, Cui X, Kong L, Li N, Cheng Z, Peng W, Yan B, Chen G. Application of MXene-based materials in Fenton-like systems for organic wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160539. [PMID: 36464059 DOI: 10.1016/j.scitotenv.2022.160539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Recently, Fenton-like systems have been widely explored and applied for the removal of organic matter from wastewater. Two-dimensional (2D) MXene-based materials exhibit excellent adsorption and catalysis capacity for organic pollutants removal, which has been reported widely. However, there is no summary on the application of MXene-based materials in Fenton-like systems for organic matter removal. In this review, four types of MXene-based materials were introduced, including 2D MXene, MXene/Metal complex, MXene/Metal oxide complex, and MXene/3D carbon material complex. In addition, the Fenton-like system usually consists of adsorption and degradation processes. The oxidation process might contain hydrogen peroxide (H2O2) or persulfate (PS) oxidants. This review summarizes the performance and mechanisms of organic pollutants adsorption and oxidants activation by MXene-based materials systematically. Finally, the existing problems and future research directions of MXene-based materials are proposed in Fenton-like wastewater treatment systems.
Collapse
Affiliation(s)
- Chuanbin Wang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Jingya Ye
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Lan Liang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Xiaoqiang Cui
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Lingchao Kong
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Ning Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, PR China.
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Wenchao Peng
- Department of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China; School of Science, Tibet University, Lhasa 850012, PR China.
| |
Collapse
|
7
|
Zhou K, Gong K, Wang C, Zhou M, Xiao J. Construction of Ti3C2 MXene based fire resistance nanocoating on flexible polyurethane foam for highly efficient photothermal conversion and solar water desalination. J Colloid Interface Sci 2023; 630:343-354. [DOI: 10.1016/j.jcis.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/11/2022]
|
8
|
Shang Y, Li B, Xu C, Zhang R, Wang Y. Biomimetic Janus photothermal membrane for efficient interfacial solar evaporation and simultaneous water decontamination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Yang X, Bu Y, Zhao Y, Li H, Gao G. In-situ photothermal activation of peroxydisulfate in a carbon nanotubes membrane-based flow-by reactor toward degradation of contaminants. CHEMOSPHERE 2022; 303:135119. [PMID: 35642858 DOI: 10.1016/j.chemosphere.2022.135119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The energy-induced peroxydisulfate (PDS) activation is a green and effective approach for pollutant degradation, while the huge energy consumption would significantly increase the cost of wastewater treatment. In this study, by taking carbon nanotubes (CNTs) membrane as the light to heat (LTH) conversion materials, we developed a photothermal PDS activation process for degradation of organic contaminants in a flow-by reactor, with hydroxyl radicals (•OH) and sulfate radicals (SO4•-) as the main reactive species. This system has excellent in-situ LTH conversion performance and heat transfer ability. As a result, various pollutants are degraded with an efficiency higher than 90%. More importantly, the LTH device exhibits satisfying stability and could be used for pollutant (i.e., methyl orange (MO)) removal under solar irradiation. In addition, some important factors (i.e., irradiation distance, residence time, solution pH, and PDS dosage) that might significantly influence the removal efficiency of pollutants are optimized. This work provides a novel perspective for the activation of PDS via CNTs as photothermal materials for pollutant degradation with a flow-by reactor.
Collapse
Affiliation(s)
- Xiaohan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yongguang Bu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yang Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China.
| |
Collapse
|