1
|
Dai J, Wang Z, Tian J, Chen Q, Hong M. Purification of Xe and SF 6 through Adaptive Contractions in a Flexible Metal-Organic Framework. Inorg Chem 2025; 64:7239-7249. [PMID: 40177958 DOI: 10.1021/acs.inorgchem.5c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Overcoming the trade-off effects between adsorption capacity, adsorption selectivity, and adsorption enthalpy of an adsorbent is very important but remains a huge challenge. Here, we report a flexible metal-organic framework (FJI-H36); it can selectively adsorb Xe from Xe/Kr mixtures with high adsorption capacity but very low adsorption enthalpy. Structural analyses show that such excellent adsorption performances come from the adaptive contraction of the flexible framework; pore shrinkage can enhance the interactions between adsorbed Xe and the framework and offset some of the adsorption heats. For SF6/N2 mixtures, FJI-H36 can also enhance the adsorption performance of SF6 through adaptive contraction, resulting in both high adsorption selectivity and low adsorption enthalpy. This not only provides a new adsorbent for the purification of Xe/Kr/SF6 but also offers a potential solution to overcome the trade-offs among adsorption capacity, adsorption selectivity, and adsorption enthalpy of a specific adsorbent.
Collapse
Affiliation(s)
- Jia Dai
- College of Chemistry, Fuzhou University, Fuzhou 350002, P. R. China
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Zhongzhan Wang
- College of Chemistry, Fuzhou University, Fuzhou 350002, P. R. China
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jindou Tian
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| |
Collapse
|
2
|
Marchetti D, Riboni N, Inge AK, Cheung O, Gemmi M, Dalcanale E, Bianchi F, Massera C, Pedrini A. A Flexible Interpenetrated Diamondoid Metal-Organic Framework with Aromatic-Enriched Channels as a Preconcentrator for the Detection of Fluorinated Anesthetics. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2025; 37:2230-2240. [PMID: 40160842 PMCID: PMC11949194 DOI: 10.1021/acs.chemmater.4c03221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Flexible metal-organic frameworks (MOFs) are dynamic materials that combine long-range structural order with reversible stimulus-responsive phase transitions. In this study, we report the synthesis and characterization of two isoreticular flexible MOFs, TPPM-CPW(Me) and TPPM-CPW(Ph), constructed by combining the ligand tetra-4-(4-pyridyl)phenylmethane (TPPM) with specific Cu(II) paddle-wheel (CPW) secondary building units (SBUs). These MOFs exhibit reversible transitions between open- and closed-pore forms triggered by external stimuli, such as temperature- and pressure-induced guest removal and uptake. The stability of these frameworks is influenced by the residual equatorial groups on the Cu(II) SBUs, with phenyl-functionalized TPPM-CPW(Ph) displaying dynamic behavior characteristic of third-generation soft porous crystals. Notably, TPPM-CPW(Ph) exhibited high adsorption affinity toward fluorinated guests, including SF6 and volatile anesthetics (VAs) such as desflurane and sevoflurane. This material, when used in solid-phase microextraction (SPME) as fiber coating for the preconcentration of these VAs in air, outperformed commercial CAR/PDMS fibers, underscoring the potential of these versatile flexible MOFs in addressing environmental challenges associated with the use of volatile fluorinated compounds.
Collapse
Affiliation(s)
- Danilo Marchetti
- Department
of Chemistry, Life Sciences and Environmental Sustainability, INSTM
UdR Parma, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
- Center
for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Nicolò Riboni
- Department
of Chemistry, Life Sciences and Environmental Sustainability, INSTM
UdR Parma, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - A. Ken Inge
- Department
of Materials and Environmental Chemistry, Stockholm University, Frescativägen 8, Stockholm 10691, Sweden
| | - Ocean Cheung
- Division
of Nanotechnology and Functional Materials, Department of Materials
Science and Engineering, Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, Uppsala 75103, Sweden
| | - Mauro Gemmi
- Center
for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Enrico Dalcanale
- Department
of Chemistry, Life Sciences and Environmental Sustainability, INSTM
UdR Parma, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Federica Bianchi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, INSTM
UdR Parma, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Chiara Massera
- Department
of Chemistry, Life Sciences and Environmental Sustainability, INSTM
UdR Parma, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Alessandro Pedrini
- Department
of Chemistry, Life Sciences and Environmental Sustainability, INSTM
UdR Parma, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| |
Collapse
|
3
|
Wang Q, Hu Y, Gu Y. Molecular Mechanism Behind the Capture of Fluorinated Gases by Metal-Organic Frameworks. NANO-MICRO LETTERS 2025; 17:118. [PMID: 39869273 PMCID: PMC11772676 DOI: 10.1007/s40820-024-01584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/01/2024] [Indexed: 01/28/2025]
Abstract
Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired. Recently, as a highly designable porous adsorbents, metal-organic frameworks (MOFs) exhibit excellent selective sorption performance toward F-gases, especially for the recognition and separation of different F-gases with highly similar properties, showing their great potential in F-gases control and recovery. In this review, we discuss the capture and separation of F-gases and their azeotropic, near-azeotropic, and isomeric mixtures in various application scenarios by MOFs, specifically classify and analyze molecular interaction between F-gases and MOFs, and interpret the mechanisms underlying their high performance regarding both adsorption capacity and selectivity, providing a repertoire for future materials design. Challenges faced in the transformation research roadmap of MOFs adsorbent separation technologies toward F-gases are also discussed, and areas for future research endeavors are highlighted.
Collapse
Affiliation(s)
- Qian Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, People's Republic of China
| | - Yifan Gu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
- Key Laboratory of Cities' Mitigation and Adaptation to Climate Change, China Meteorological Administration (CMA), Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
4
|
Fan ZW, Wang Y, Liu J, Cheng ZT, Wang C, Niu Z. Metal-Organic Framework-Based NF 3 Nanotrap for the Separation of NF 3 and CF 4. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2349-2354. [PMID: 39689212 DOI: 10.1021/acsami.4c11528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
As an electronic specialty gas, nitrogen trifluoride (NF3) has been widely used in the semiconductor, photovoltaic, and display industries. However, NF3 in industrial settings is typically mixed with CF4, and the distillation method commonly used for their separation consumes significant energy. Herein, we propose a novel NF3 nanoadsorber featuring relatively proximal unsaturated metal sites. The potential field overlap between the two unsaturated metal centers creates an NF3-affinitive environment. The adsorption mechanism of NF3 molecules in the metal-organic frameworks (MOFs) was investigated through density functional theory (DFT) optimization. The results from ideal adsorbed solution theory (IAST) calculations and breakthrough experiments reveal that the MOF-based NF3 nanotrap possesses the highest adsorption capacity and excellent NF3/CF4 selectivity among the physically adsorptive materials reported to date. This work presents a novel solution for the separation and purification of NF3, contributing to the field of gas separation technology.
Collapse
Affiliation(s)
- Zi-Wen Fan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jieyu Liu
- Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Zi-Tong Cheng
- Lingnan College, Sun Yat-sen University, Guangzhou 510275, China
| | - Changhong Wang
- Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Wang SM, Zhang Q, Li YT, Liu SC, Yang QY. Destructive Adsorption of Nitrogen Trifluoride (NF 3) Using M-MOF-74 with Open Metal Sites. CHEM & BIO ENGINEERING 2024; 1:535-540. [PMID: 39974601 PMCID: PMC11835164 DOI: 10.1021/cbe.3c00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2025]
Abstract
Using solid adsorbents for the destructive sorption of nitrogen trifluoride (NF3) presents a potential solution to its dual challenges as a potent greenhouse gas and hazardous compound in microelectronics. In this study, a series of MOFs (M-MOF-74, M = Mg, Co, Ni, Zn) with open metal sites (OMSs) are utilized for NF3 adsorption. By employing single-component adsorption isotherms and the ideal adsorbed solution theory (IAST) selectivity calculations, the adsorption performance of various adsorbents is evaluated. The results indicate that Mg, Co, and Ni-MOF-74 exhibit high adsorption capacities for NF3, while Zn-MOF-74 shows a lower adsorption capacity, likely due to the weaker Lewis acidity of Zn2+. Experimental findings from PXRD and gas adsorption studies indicate structural pore alteration in the MOF-74 series following NF3 gas adsorption. Theoretical computational analyses reveal that the MOF-74 series has a higher adsorption affinity for NF3 compared to N2. This research provides insights into the use of efficient MOF sorbents for the destructive adsorption of NF3.
Collapse
Affiliation(s)
- Shao-Min Wang
- School
of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Qian Zhang
- High
& New Technology Research Center of Henan Academy of Sciences, Zhengzhou 450052, Henan Province, China
| | - Yi-Tao Li
- School
of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Si-Chao Liu
- School
of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Qing-Yuan Yang
- School
of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
6
|
Li YP, Ni JJ, Zhang XJ, Zhang XL, Wen W, Sui ZY, Xu XF. Pore Environmental Modification by Amino Groups in Robust Microporous MOFs for SF 6 Capturing and SF 6/N 2 Separation. Inorg Chem 2024; 63:13568-13575. [PMID: 38973105 DOI: 10.1021/acs.inorgchem.4c01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Capturing and separating the greenhouse gas SF6 from nitrogen N2 have significant greenhouse mitigation potential and economic benefits. We used a pore engineering strategy to manipulate the pore environment of the metal-organic framework (MOF) by incorporating organic functional groups (-NH2). This resulted in an enhanced adsorption of SF6 and separation of the SF6/N2 mixture in the MOF. The introduction of amino (-NH2) groups into YTU-29 resulted in a reduction of the Brunauer-Emmett-Teller surface but an increase in interactions with SF6 within the confined pores. Water-stable YTU-29-NH2 showed a significantly higher SF6 uptake (95.5 cm3/g) than YTU-29 (77.4 cm3/g). The results of the breakthrough experiments show that YTU-29-NH2 has a significantly improved separation performance for SF6/N2 mixtures, with a high SF6 capture of 0.88 mmol/g compared to 0.56 mmol/g by YTU-29. This improvement is due to the suitable pore confinement and accessible -NH2 groups on pore surfaces. Considering its excellent regeneration ability and cycling performance, ultrastable YTU-29-NH2 demonstrates great potential for SF6 capturing and SF6/N2 separation.
Collapse
Affiliation(s)
- Yong-Peng Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jing-Jing Ni
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiao-Jie Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiao-Long Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wen Wen
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Zhu-Yin Sui
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiu-Feng Xu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
7
|
Miao X, Sui J, Weng S, Zhang J, Zhao H, Wei Y, Shi J, Zhao Y, Cai J, Xiao L, Hou L. Construction of Hierarchical Porous UiO-66-Br 2@PS/DVB-Packed Columns by High Internal Phase Emulsion Strategy for Enhanced Separation of CF 4/N 2 and SF 6/N 2. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38669622 DOI: 10.1021/acsami.4c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Recovery and separation of anthropogenic emissions of electronic specialty gases (F-gases, such as CF4 and SF6) from the semiconductor sector are of critical importance. In this work, the hierarchical porous UiO-66-Br2@PS/DVB-packed column was constructed by a high internal phase emulsions strategy. UiO-66-Br2@PS/DVB exhibits a superior selectivity of CF4/N2 (2.67) and SF6/N2 (3.34) predicted by the IAST due to the diffusion limitation in the micropore and the gas-framework affinity. Especially, UiO-66-Br2@PS/DVB showed significant CF4 and SF6 retention and enabled the successful separation of CF4/N2 and SF6/N2 with a resolution of 2.37 and 8.89, respectively, when used as a packed column in gas chromatography. Compared with the Porapak Q column, the HETP of the UiO-66-Br2@PS/DVB-packed column decreased and showed good reproducibility. This research not only offers a convenient method for fabricating a hierarchical porous MOF-packed column but also showcases the prospective utilization of MOFs for the separation of the F-gas/N2 mixture.
Collapse
Affiliation(s)
- Xiaoyu Miao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jincheng Sui
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Sen Weng
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jian Zhang
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Hao Zhao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yifeng Wei
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Junjie Shi
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yulai Zhao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jingyu Cai
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Longqiang Xiao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
8
|
Zhang HD, Li XD, Xie YY, Yang PH, Yu JX. High throughput screening of pure silica zeolites for CF 4 capture from electronics industry gas. Phys Chem Chem Phys 2024; 26:11570-11581. [PMID: 38533820 DOI: 10.1039/d4cp00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The capture and separation of CF4 from CF4/N2 mixture gas is a crucial issue in the electronics industry, as CF4 is a commonly used etching gas and the ratio of CF4 to N2 directly affects process efficiency. Utilizing high-throughput computational screening techniques and grand canonical Monte Carlo (GCMC) simulations, we comprehensively screened and assessed 247 types of pure silicon zeolite materials to determine their adsorption and separation performance for CF4/N2 mixtures. Based on screening, the relationships between the structural parameters and adsorption and separation properties were meticulously investigated. Four indicators including adsorption selectivity, working capacity, adsorbent performance score (APS), and regenerability (R%) were used to evaluate the performance of adsorbents. Based on the evaluation, we selected the top three best-performing zeolite structures for vacuum swing adsorption (LEV, AWW and ESV) and pressure swing adsorption (AVL, ZON, and ERI) processes respectively. Also, we studied the preferable adsorption sites of CF4 and N2 in the selected zeolite structures through centroid density distributions at the molecule level. We expect the study may provide some valuable guidance for subsequent experimental investigations on adsorption and separation of CF4/N2.
Collapse
Affiliation(s)
- Hui-Dong Zhang
- College of Science, Henan University of Technology, Zhengzhou 450001, China.
| | - Xiao-Dong Li
- College of Science, Henan University of Technology, Zhengzhou 450001, China.
| | - Yan-Yu Xie
- College of Science, Henan University of Technology, Zhengzhou 450001, China.
| | - Peng-Hui Yang
- College of Science, Henan University of Technology, Zhengzhou 450001, China.
| | - Jing-Xin Yu
- College of Science, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Zhao YL, Zhang X, Li MZ, Li JR. Non-CO 2 greenhouse gas separation using advanced porous materials. Chem Soc Rev 2024; 53:2056-2098. [PMID: 38214051 DOI: 10.1039/d3cs00285c] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Global warming has become a growing concern over decades, prompting numerous research endeavours to reduce the carbon dioxide (CO2) emission, the major greenhouse gas (GHG). However, the contribution of other non-CO2 GHGs including methane (CH4), nitrous oxide (N2O), fluorocarbons, perfluorinated gases, etc. should not be overlooked, due to their high global warming potential and environmental hazards. In order to reduce the emission of non-CO2 GHGs, advanced separation technologies with high efficiency and low energy consumption such as adsorptive separation or membrane separation are highly desirable. Advanced porous materials (APMs) including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), porous organic polymers (POPs), etc. have been developed to boost the adsorptive and membrane separation, due to their tunable pore structure and surface functionality. This review summarizes the progress of APM adsorbents and membranes for non-CO2 GHG separation. The material design and fabrication strategies, along with the molecular-level separation mechanisms are discussed. Besides, the state-of-the-art separation performance and challenges of various APM materials towards each type of non-CO2 GHG are analyzed, offering insightful guidance for future research. Moreover, practical industrial challenges and opportunities from the aspect of engineering are also discussed, to facilitate the industrial implementation of APMs for non-CO2 GHG separation.
Collapse
Affiliation(s)
- Yan-Long Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Mu-Zi Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
10
|
Zeng J, Fu Y, Wu Y, Wang S, Zhang W, Ma H. Absolute CO 2 /Xenon Separation in Ultramicropore MOF for Anesthetic Gases Regeneration. Angew Chem Int Ed Engl 2023; 62:e202310235. [PMID: 37658513 DOI: 10.1002/anie.202310235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/12/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
Xe is an ideal anesthetic gas, but it has not been widely used in practice due to its high cost and low output. Closed-circuit Xe recovery and recycling is an economically viable method to ensure adequate supply in medical use. Herein, we design an innovative way to recover Xe by using a stable fluorinated metal-organic framework (MOF) NbOFFIVE-1-Ni to eliminate CO2 from moist exhaled anesthetic gases. Unlike other Xe recovery MOFs with low Xe/CO2 selectivity (less than 10), NbOFFIVE-1-Ni could achieve absolute molecular sieve separation of CO2 /Xe with excellent CO2 selectivity (825). Mixed-gas breakthrough experiments assert the potential of NbOFFIVE-1-Ni as a molecular sieve adsorbent for the effective and energy-efficient removal of carbon dioxide with 99.16 % Xe recovery. Absolute CO2 /Xe separation in NbOFFIVE-1-Ni makes closed-circuit Xe recovery and recycling can be easily realized, demonstrating the potential of NbOFFIVE-1-Ni for important anesthetic gas regeneration under ambient conditions.
Collapse
Affiliation(s)
- Jiahui Zeng
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Yu Fu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Yue Wu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Shanshan Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Wenxiang Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Heping Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
11
|
Zhang W, Li Y, Wu Y, Huang W, Wang S, Fu Y, Ma W, Li X, Ma H. Polypyrene Porous Organic Framework for Efficiently Capturing Electron Specialty Gases. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37300495 DOI: 10.1021/acsami.3c05398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The polypyrene polymer with an extended π-conjugated skeleton is attractive for perfluorinated electron specialty gas (F-gas) capture as the high electronegativity of fluorine atoms makes F-gases strongly electronegative gases. Herein, a polypyrene porous organic framework (termed as Ppy-POF) with an extended π-conjugated structure and excellent acid resistance was constructed. Systematic studies have shown that the abundant π-conjugated structures and gradient electric field distribution in Ppy-POF can endow it exceptional adsorption selectivity for high polarizable F-gases and xenon (Xe), which has been collaboratively confirmed by single-component gas adsorption experiments, time-dependent adsorption rate tests, dynamic breakthrough experiments, etc. Electrostatic potential distribution and charge density difference based on Grand Canonical Monte Carlo simulations and density functional theory calculations demonstrate that the selective adsorption of F-gases and Xe in Ppy-POF is attributed to the strong charge-transfer effect and polarization effect between Ppy-POF and gases. These results manifest that the POF with an extended π-conjugated structure and gradient electric field distribution has great potential in efficiently capturing electron specialty gases.
Collapse
Affiliation(s)
- Wenxiang Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yinhui Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yue Wu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Wenbo Huang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shanshan Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yu Fu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Wuju Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xiaoyu Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Heping Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
12
|
Deng Z, Liu Y, Wan M, Ge S, Zhao Z, Chen J, Chen S, Deng S, Wang J. Breaking trade-off effect of Xe/Kr separation on microporous and heteroatoms-rich carbon adsorbents. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Nickel-based metal–organic framework for efficient capture of CF4 with a high CF4/N2 selectivity. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Chang M, Wang F, Wei Y, Yang Q, Wang J, Liu D, Chen J. Separation of
CH
4
/
N
2
by an
Ultra‐Stable Metal‐Organic
Framework with the Highest Breakthrough Selectivity. AIChE J 2022. [DOI: 10.1002/aic.17794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Miao Chang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Fei Wang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Yan Wei
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Qingyuan Yang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Jie‐Xin Wang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Dahuan Liu
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Jian‐Feng Chen
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| |
Collapse
|