1
|
Chen G, Zhu H, Liu G, Liu G, Jin W. Confinement Effects and Manipulation Strategies of Nanocomposite Membranes towards Molecular Separation. Angew Chem Int Ed Engl 2025; 64:e202418649. [PMID: 39506877 DOI: 10.1002/anie.202418649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/08/2024]
Abstract
Materials featuring well-defined nanoscale channels offer inherent advantages in the selective transport of gases, liquids, and ions, making them pivotal in applications such as molecular separation, catalysis and energy storage. A crucial challenge lies in assembling ordered nanochannel structures and translating these microscopic architectures into macroscopic regular distributions to enhance performance. Nanocomposites provide a promising solution by incorporating nanoscale material (e.g., filler) that significantly enhances macroscale properties of matrix (e.g., polymer). In this review, we spotlight nanocomposite membranes nanocomposite membranes that utilize confinement effects between filler and matrix to precisely control nanochannel apertures, surface properties, and channel distribution for efficient separation of target systems. We discussed the underlying design principles, channel architectures, and strategies for optimizing polymer-filler interfaces and nanochannel manipulation within functional membranes. Emphasis is placed on the fundamental mechanisms of mass transport, and the structure-property-performance relationships within the nanocomposite membranes towards molecular separation. This work aims to provide a comprehensive understanding of how these nanocomposite membranes can be further developed to meet the demands of industrial and environmental applications.
Collapse
Affiliation(s)
- Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Haipeng Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| |
Collapse
|
2
|
Wu L, Wang Y, Zheng Q, Wu J, Zhang H, Fu R, Ren Y. Color and functionality construction of cellulose towels with biological Monascus pigment based on a nano-suspension system. Int J Biol Macromol 2024; 282:137351. [PMID: 39515721 DOI: 10.1016/j.ijbiomac.2024.137351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/06/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
As a sanitary textile that directly contacts sensitive parts of the human body, such as mouth, nose and eyes, towel is very important for our daily life and health. However, the colored cellulose towels we use daily are dyed with synthetic dyes. This can be a problem for people with sensitive skin, particularly babies. In this research, cellulose towel fabric was dyed using a nano-level Monascus pigment dyeing solution, which eliminated the need for organic solvent to dissolve the pigment, making it an environmentally friendly dyeing scheme. After 90 °C pre-mordanting treatment and 80 °C dyeing for 30 min respectively, the K/S value of towel fabric could reach 9. In addition, the washing fastness of dyed towel fabric was 3-4, the dry/wet friction fastness was 4-5 and 3-4, and the K/S value remained high even after 20 washing times, and also demonstrated a certain level of UV resistance and antibacterial properties. In conclusion, the application of the dyeing method for cellulose towel fabric with biological Monascus pigment based on a nano-suspension system was found to be both efficient and environmentally friendly, which was anticipated to replace certain traditional synthetic dyes in the future.
Collapse
Affiliation(s)
- Lin Wu
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles & Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, 308 Ningxia Road, Qingdao 266071, China; Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
| | - Yulong Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles & Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, 308 Ningxia Road, Qingdao 266071, China; Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
| | - Qiumeng Zheng
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles & Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, 308 Ningxia Road, Qingdao 266071, China; Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
| | - Jing Wu
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles & Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, 308 Ningxia Road, Qingdao 266071, China; Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
| | - Hang Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles & Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, 308 Ningxia Road, Qingdao 266071, China; Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
| | - Ranran Fu
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles & Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, 308 Ningxia Road, Qingdao 266071, China.
| | - Yanfei Ren
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles & Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, 308 Ningxia Road, Qingdao 266071, China; Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
3
|
Li CN, Xu WG, Liu L, Han ZB. Defect engineering improves CO 2/N 2 and CH 4/N 2 separation performance of MOF-801. Dalton Trans 2024; 53:5356-5359. [PMID: 38445433 DOI: 10.1039/d3dt04009g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A defect engineering modification method is reported to improve the CO2/N2 and CH4/N2 separation performance of MOF-801, owing to skeleton shrinkage caused by defect modification, Zr-FA0.5 shows excellent gas separation performance compared with the prototype MOF.
Collapse
Affiliation(s)
- Chen-Ning Li
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Wei-Guo Xu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Lin Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Zheng-Bo Han
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| |
Collapse
|
4
|
Zhao YL, Zhang X, Li MZ, Li JR. Non-CO 2 greenhouse gas separation using advanced porous materials. Chem Soc Rev 2024; 53:2056-2098. [PMID: 38214051 DOI: 10.1039/d3cs00285c] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Global warming has become a growing concern over decades, prompting numerous research endeavours to reduce the carbon dioxide (CO2) emission, the major greenhouse gas (GHG). However, the contribution of other non-CO2 GHGs including methane (CH4), nitrous oxide (N2O), fluorocarbons, perfluorinated gases, etc. should not be overlooked, due to their high global warming potential and environmental hazards. In order to reduce the emission of non-CO2 GHGs, advanced separation technologies with high efficiency and low energy consumption such as adsorptive separation or membrane separation are highly desirable. Advanced porous materials (APMs) including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), porous organic polymers (POPs), etc. have been developed to boost the adsorptive and membrane separation, due to their tunable pore structure and surface functionality. This review summarizes the progress of APM adsorbents and membranes for non-CO2 GHG separation. The material design and fabrication strategies, along with the molecular-level separation mechanisms are discussed. Besides, the state-of-the-art separation performance and challenges of various APM materials towards each type of non-CO2 GHG are analyzed, offering insightful guidance for future research. Moreover, practical industrial challenges and opportunities from the aspect of engineering are also discussed, to facilitate the industrial implementation of APMs for non-CO2 GHG separation.
Collapse
Affiliation(s)
- Yan-Long Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Mu-Zi Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
5
|
Liu Y, Chen H, Li T, Ren Y, Wang H, Song Z, Li J, Zhao Q, Li J, Li L. Balancing the Crystallinity and Film Formation of Metal-Organic Framework Membranes through In Situ Modulation for Efficient Gas Separation. Angew Chem Int Ed Engl 2023; 62:e202309095. [PMID: 37488075 DOI: 10.1002/anie.202309095] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Polycrystalline metal-organic framework (MOF) layers hold great promise as molecular sieve membranes for efficient gas separation. Nevertheless, the high crystallinity tends to cause inter-crystalline defects/cracks in the nearby crystals, which makes crystalline porous materials face a great challenge in the fabrication of defect-free membranes. Herein, for the first time, we demonstrate the balance between crystallinity and film formation of MOF membrane through a facile in situ modulation strategy. Monocarboxylic acid was introduced as a modulator to regulate the crystallinity via competitive complexation and thus concomitantly control the film-forming state during membrane growth. Through adjusting the ratio of modulator acid/linker acid, an appropriate balance between this structural "trade-off" was achieved. The resulting MOF membrane with moderate crystallinity and coherent morphology exhibits molecular sieving for H2 /CO2 separation with selectivity up to 82.5.
Collapse
Affiliation(s)
- Yutao Liu
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Hui Chen
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Tong Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Yongheng Ren
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Hui Wang
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Zhengxuan Song
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Jianhui Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Qiang Zhao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Jinping Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Libo Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| |
Collapse
|
6
|
Chithra KR, Rao SM, Varsha MV, Nageswaran G. Bimetallic Metal-Organic Frameworks (BMOF) and BMOF- Incorporated Membranes for Energy and Environmental Applications. Chempluschem 2023; 88:e202200420. [PMID: 36795938 DOI: 10.1002/cplu.202200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Bimetallic metal organic frameworks (BMOFs) are a class of crystalline solids and their structure comprises two metal ions in the lattice. BMOFs show a synergistic effect of two metal centres and enhanced properties compared to MOFs. By controlling the composition and relative distribution of two metal ions in the lattice the structure, morphology, and topology of BMOFs could be regulated resulting in an improvement in the tunability of pore structure, activity, and selectivity. Thus, developing BMOFs and BMOF incorporated membranes for applications such as adsorption, separation, catalysis, and sensing is a promising strategy to mitigate environmental pollution and address the looming energy crisis. Herein we present an overview of recent advancements in the area of BMOFs and a comprehensive review of BMOF incorporated membranes reported to date. The scope, challenges as well as future perspectives for BMOFs and BMOF incorporated membranes are presented.
Collapse
Affiliation(s)
- K R Chithra
- Department of Chemistry, Indian Institute of Space Science and Technology Valiyamala, Thiruvanthapuram, Kerala, India
| | - Shashank M Rao
- Department of Chemistry, Indian Institute of Space Science and Technology Valiyamala, Thiruvanthapuram, Kerala, India
| | - M V Varsha
- Department of Chemistry, Indian Institute of Space Science and Technology Valiyamala, Thiruvanthapuram, Kerala, India
| | - Gomathi Nageswaran
- Department of Chemistry, Indian Institute of Space Science and Technology Valiyamala, Thiruvanthapuram, Kerala, India
| |
Collapse
|
7
|
Yu C, Jia Y, Fang K, Qin Y, Deng N, Liang Y. Preparation hierarchical porous MOF membranes with island-like structure for efficient gas separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Zhao Y, Yang X, Luo J, Wei Y, Wang H. Porous stainless steel hollow fiber-supported ZIF-8 membranes via FCDS for hydrogen/carbon dioxide separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|