1
|
Wang Z, Fu Q, Xie D, Wang F, Zhang G, Shan H. Facile Fabrication of Zeolitic Imidazolate Framework-8@Regenerated Cellulose Nanofibrous Membranes for Effective Adsorption of Tetracycline Hydrochloride. Molecules 2024; 29:4146. [PMID: 39274994 PMCID: PMC11397351 DOI: 10.3390/molecules29174146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
The excessive utilization of antimicrobials in humans and animals has resulted in considerable environmental contamination, necessitating the development of high-performance antibiotic adsorption media. A significant challenge is the development of composite nanofibrous materials that are both beneficial and easy to fabricate, with the aim of improving adsorption capacity. Herein, a new kind of zeolitic imidazolate framework-8 (ZIF-8)-modified regenerated cellulose nanofibrous membrane (ZIF-8@RC NFM) was designed and fabricated by combining electrospinning and in situ surface modification technologies. Benefiting from its favorable surface wettability, enhanced tensile strength, interconnected porous structure, and relatively large specific surface area, the resulting ZIF-8@RC NFMs exhibit a relatively high adsorption capacity for tetracycline hydrochloride (TCH) of 105 mg g-1 within 3 h. Moreover, a Langmuir isotherm model and a pseudo-second-order model have been demonstrated to be more appropriate for the description of the TCH adsorption process of ZIF-8@RC-3 NFMs. Additionally, this composite fibrous material could keep a relatively stable adsorption capability under various ionic strengths. The successful fabrication of the novel ZIF-8@RC NFMs may shed light on the further development of wastewater adsorption treatment materials.
Collapse
Affiliation(s)
- Zhirong Wang
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Qiuxia Fu
- School of Textile and Clothing, Nantong University, Nantong 226019, China
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Dandan Xie
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Fujie Wang
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Guangyu Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Haoru Shan
- School of Textile and Clothing, Nantong University, Nantong 226019, China
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| |
Collapse
|
2
|
Zhang S, Yi J, Yuan X, Zhang Z, Shan Z, Wang H. Fabrication and characterization of carrageenan-based multifunctional films integrated with gallic acid@ZIF-8 for beef preservation. Int J Biol Macromol 2024; 274:133319. [PMID: 38908634 DOI: 10.1016/j.ijbiomac.2024.133319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
The development of environmentally friendly biodegradable films is urgently required for reducing the plastic pollution crisis and ensuring food safety. Thus, here we aimed to prepare ZIF-8 that has delivery ability for gallic acid (GA) and further incorporated this material (GA@ZIF-8) into carrageenan (CA) matrix to obtain a series of CA-GA@ZIF-8 films. This design significantly improved the mechanical strength and UV barrier and reduced water vapor permeability, moisture content, and swelling rate of the CA films. CA-GA@ZIF-8 films exhibited sustainable release of GA and controlled migration of Zn2+ up to 144 h in a high-fat food simulator. Also, the composite films performed high-efficiency antioxidant activities (83.29 % for DPPH and 62.11 % for ABTS radical scavenging activity) and 99.51 % antimicrobial effects against Escherichia coli O157:H7 after 24 h. The great biocompatibility of GA@ZIF-8 and CA-GA@ZIF-8-10 % was confirmed by hemolysis, cell cytotoxicity, and mice model. Finally, the preservation experiments showed that CA-GA@ZIF-8 films could effectively maintain freshness and reduce the growth of microorganisms and oxidation of lipids during the preservation of beef. These results suggest that CA-GA@ZIF-8 films hold promising potential for improving the quality preservation of beef.
Collapse
Affiliation(s)
- Shuqi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jing Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xuanxuan Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zhilong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zhongguo Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Haihua Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Qiu Z, Chen J, Zeng J, Dai R, Wang Z. A review on artificial water channels incorporated polyamide membranes for water purification: Transport mechanisms and performance. WATER RESEARCH 2023; 247:120774. [PMID: 37898000 DOI: 10.1016/j.watres.2023.120774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
While thin-film composite (TFC) polyamide (PA) membranes are advanced for removing salts and trace organic contaminants (TrOCs) from water, TFC PA membranes encounter a water permeance-selectivity trade-off due to PA layer structural characteristics. Drawing inspiration from the excellent water permeance and solute rejection of natural biological channels, the development of analogous artificial water channels (AWCs) in TFC PA membranes (abbreviated as AWCM) promises to achieve superior mass transfer efficiency, enabling breaking the upper bound of water permeance and selectivity. Herein, we first discussed the types and structural characteristics of AWCs, followed by summarizing the methods for constructing AWCM. We discussed whether the AWCs acted as the primary mass transfer channels in AWCM and emphasized the important role of the AWCs in water transport and ion/TrOCs rejection. We thoroughly summarized the molecular-level mechanisms and structure-performance relationship of water molecules, ions, and TrOCs transport in the confined nanospace of AWCs, which laid the foundation for illustrating the enhanced water permeance and salt/TrOCs selectivity of AWCM. Finally, we discussed the challenges encountered in the field of AWCM and proposed future perspectives for practical applications. This review is expected to offer guidance for understanding the transport mechanisms of AWCM and developing next-generation membrane for effective water treatment.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiansuxuan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jin Zeng
- School of Software Engineering, Tongji University, Shanghai 201804, PR China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
4
|
Zhu Y, Huang Z, Tang M, Li Q, Liu Y, Bai X. A charged nanocomposite membrane via co-deposition of gallic acid and polyethyleneimine-silver for improving separation and antibacterial properties. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:711-728. [PMID: 36789713 DOI: 10.2166/wst.2023.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pharmaceuticals have been continuously detected from surface water and groundwater. In order to improve the rejection performance of pharmaceuticals by a nanofiltration membrane (NF), a positively charged membrane was prepared by co-deposition of natural gallic acid and polyethyleneimine on the polyacrylonitrile hydrolysis membrane. Effects of gallic acid concentration, polyethylene imine concentration, reaction time, and the molecular weight of polyethylene imine were documented. The physical and chemical properties of the membrane were also investigated by surface morphology, hydrophilicity, surface charge, and molecular weight cut-off. The optimized membrane had a molecular weight cut-off of about 958 Da and possessed a pure water permeability of 74.21 L·m-2·h-1·MPa-1. The results exhibited salt rejection in the following order: MgCl2 > CaCl2 > MgSO4 > Na2CO3 > NaCl > Na2SO4, while the rejection ability of pharmaceuticals is as follows: amlodipine > atenolol > carbamazepine > ibuprofen, suggesting that the positively charged membrane has enhanced retention to both divalent cations and charged pharmaceuticals. In addition, the antibacterial membrane was obtained by loading silver nanoparticles onto the positively charged membrane, which greatly improved the antibacterial ability of the membrane.
Collapse
Affiliation(s)
- Yihang Zhu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhonghua Huang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mengdi Tang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qunxia Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yulong Liu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinhui Bai
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
5
|
A Visible Light-Induced and ROS-Dependent Method for the Rapid Formation of a MOF Composite Membrane with Antibacterial Properties. Int J Mol Sci 2023; 24:ijms24021520. [PMID: 36675031 PMCID: PMC9861057 DOI: 10.3390/ijms24021520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
The diverse application potential of metal-organic framework (MOF) materials are currently limited by their challenging and complicated preparation processes. In this study, we successfully developed a novel strategy for the rapid synthesis of a sustainable MOF composite membrane under neutral conditions with improved physicochemical and antibacterial properties. Our reaction pipeline comprised visible light that induced the production of reactive oxygen species (ROS) from ZIF-8 particles, which facilitated the rapid oxidative polymerization of dopamine to polydopamine. The physicochemical properties of the composite membrane were assessed using imaging methods, including scanning and transmission electron microscopy, X-ray photoelectron spectrometry, and nitrogen adsorption/desorption; its antibacterial effects against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were measured using optical densitometry. The bactericidal potency of the synthesized membrane was >99% against all tested strains under the conditions of simulated sunlight. Moreover, the composite membrane retained its structural integrity and antibacterial effect after multiple cycles of use and recovery, showcasing remarkable stability. Overall, this study displays a ROS-mediated method for the rapid preparation of sustainable MOF composite membranes under neutral conditions with optimal physicochemical characteristics, antibacterial properties, and performance. Our study provides insights into the use of membrane materials as design platforms for a range of diverse practical applications.
Collapse
|
6
|
Zhao B, Sun M, Guo Z, Wang L, Qian Y, He X, Li J. Enhanced water permeance and EDCs rejection using a UiO-66-NH 2-predeposited polyamide membrane. CHEMOSPHERE 2023; 312:137114. [PMID: 36334752 DOI: 10.1016/j.chemosphere.2022.137114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Endocrine disrupting compounds (EDCs) have been increasingly detected in drinking water sources, and pose severe threat to human health. Polyamide (PA) based nanofiltration (NF) membrane has great potential for EDCs removal from water, but the removal of hydrophobic EDCs is not satisfying due to strong hydrophobic affinity. In this study, UiO-66-NH2/PA membranes were prepared by predepositing hydrophilic UiO-66-NH2 onto the substrate prior to interfacial polymerization. The UiO-66-NH2 aggregates increased the permeable area and strengthened the "gutter effect". Therefore, the pure water flux of UiO-66-NH2/PA increased by 115% compared with that of the thin-film composite (TFC) membrane, and its rejection of Na2SO4 was 96%. The hydrophilicity-enhanced PA film reduced its adsorption of EDCs and decreased the driving force for EDCs diffusion. Moreover, the UiO-66-NH2-induced hydrophilic nanochannels, including the interfacial gaps between PA film and UiO-66-NH2 aggregates, the gaps in UiO-66-NH2 aggregates, and the inherent pores in UiO-66-NH2 crystals, alleviated the hydrophobic affinity and effectively restricted EDCs diffusion. The rejection rates of methylparaben, propylparaben, bisphenol A, and benzylparaben by the optimal UiO-66-NH2/PA were 50%, 67%, 75%, and 85%, respectively, and the water/benzylparaben selectivity was 4.4 times as high as that of TFC. The results demonstrate that incorporating hydrophilic metal-organic frameworks (MOFs) can improve the membrane hydrophilicity and create hydrophilic nanochannels, and is an effective strategy to enhance EDCs removal by nanofiltration.
Collapse
Affiliation(s)
- Bin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Min Sun
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhiqiang Guo
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Yiran Qian
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xiaojia He
- The Administrative Center for China's Agenda 21, Beijing, 100038, China
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 200120, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Heterogeneous electro-Fenton catalysis with novel bimetallic CoFeC electrode. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Anti-biofouling polyvinylidene fluoride/quaternized polyvinyl alcohol ultrafiltration membrane selectively separates aromatic contaminants from wastewater by host–guest interactions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Li X, Shao H, Ma Q, Yu W, Dong X. Self-supporting flexible metal-organic framework-based electrospun nanofibers membrane for efficient removal of tetracycline from aqueous solutions. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|