1
|
Wei Y, Zhou S, Wei J, Cai H, Hou Y, Jia Z, Su X. Carbon Dot-Stabilized Hydrogel Composite: A New Adsorbent for Efficient and Sustainable Pb(II) Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9651-9660. [PMID: 38656101 DOI: 10.1021/acs.langmuir.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In this paper, a carbon dot hydrogel composite (CDs-Hy) capable of efficiently removing Pb(II) was prepared by hydrogen bonding self-assembly in combination with carbon dots and a hydrogel. CDs-Hy was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS), and the effect of the adsorption conditions on the adsorption efficiency of CDs-Hy was studied. The results of the study showed that the incorporation of carbon dots, on the one hand, significantly increased the adsorption capacity of the material. On the other hand, it can increase the stability of hydrogels in aqueous solution. The possible adsorption mechanisms were further verified as ion exchange and coordination. CDs-Hy is a novel adsorbent material capable of removing Pb2+ efficiently, which can be reused several times with high stability.
Collapse
Affiliation(s)
- Yuan Wei
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Shunli Zhou
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Ju Wei
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Huishan Cai
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yongrui Hou
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Zhenfu Jia
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiaodong Su
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
2
|
Feng X, Lin Y, Gan L, Zhao K, Zhao X, Pan Q, Fu G. Enhancement of Mass Transfer Process for Photocatalytic Reduction in Cr(VI) by Electric Field Assistance. Int J Mol Sci 2024; 25:2832. [PMID: 38474082 DOI: 10.3390/ijms25052832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The removal of Cr(VI), a highly-toxic heavy metal, from industrial wastewater is a critical issue in water treatment research. Photocatalysis, a promising technology to solve the Cr(VI) pollution problem, requires urgent and continuous improvement to enhance its performance. To address this need, an electric field-assisted photocatalytic system (PCS) was proposed to meet the growing demand for industrial wastewater treatment. Firstly, we selected PAF-54, a nitrogen-rich porous organic polymer, as the PCS's catalytic material. PAF-54 exhibits a large adsorption capacity (189 mg/g) for Cr(VI) oxyanions through hydrogen bonding and electrostatic interaction. It was then coated on carbon paper (CP) and used as the photocatalytic electrode. The synergy between capacitive deionization (CDI) and photocatalysis significantly promotes the photoreduction of Cr(VI). The photocatalytic performance was enhanced due to the electric field's influence on the mass transfer process, which could strengthen the enrichment of Cr(VI) oxyanions and the repulsion of Cr(III) cations on the surface of PAF-54/CP electrode. In addition, the PCS system demonstrates excellent recyclability and stability, making it a promising candidate for chromium wastewater treatment.
Collapse
Affiliation(s)
- Xi Feng
- School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Yonghui Lin
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Letian Gan
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Kaiyuan Zhao
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Xiaojun Zhao
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Qinhe Pan
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Guohua Fu
- Management School, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Bai Z, Rong D, Li M, Xu G, Liu S, Zeng J, Lv Y, Tang Y, Wen X. Hierarchical Mg/Al hydrotalcite oxide hollow microspheres with excellent adsorption capability towards Congo red. Dalton Trans 2024; 53:3744-3755. [PMID: 38299609 DOI: 10.1039/d3dt03816e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A novel citrate anion-intercalated Mg/Al layered double hydroxide (CA-LDH) is synthesized via a one-step hydrothermal process. The synthesized CA-LDH is a hollow flower-like microsphere composed of thin nanoflakes (10 nm in thickness). After calcination, the formed Mg/Al layered double oxide (CA-LDO) hollow microspheres possess a high specific surface area of 247.8 m2 g-1 and a high pore volume of 0.97 cm3 g-1, which endow them with excellent adsorption ability towards Congo red (CR). The maximum adsorption capacity of CR onto CA-LDO can reach up to 1883 mg g-1. The significantly improved adsorption capacity of CA-LDO can be attributed to its unique structures of hierarchical hollow microspheres, in which the hierarchical porous shell layer provides enough adsorption sites to anchor the dye molecules, and the hollow core can preserve the absorbed dye. This study provides a promising novel adsorbent which can be used for efficient water remediation.
Collapse
Affiliation(s)
- Zeng Bai
- School of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Daoqing Rong
- School of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Ming Li
- School of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Guilong Xu
- School of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Shucheng Liu
- School of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jianyun Zeng
- School of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yinghao Lv
- School of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yi Tang
- School of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xiaogang Wen
- School of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
4
|
Zhang LS, Feng XY, Qiu CF, Li LS, Sun Y, Tao XY, Li XY, Liu ZW, Cao DJ. The remediation potential and kinetics of Pb 2+ adsorbed by the organic frameworks of Cladophora rupestris. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13609-13621. [PMID: 38253838 DOI: 10.1007/s11356-024-32029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Cladophora rupestris is ubiquitous in many kinds of waterbodies, and C. rupestris biomass can serve as a carrier for adsorbing and transferring heavy metals. Batch experiments and characterization were performed. Results showed that the organic frameworks of C. rupestris (CROF) had a specific surface area of 2.58 m2/g and an external surface area of 2.06 m2/g. Many mesopores were present in CROF, mainly distributed in 2.5-7.5 nm. The zeta potentials were within the range of - 4.46 to - 13.98 mV in the tested pH of 2.0-9.0. CROF could effectively adsorb Pb2+ in large pH range. The maximum adsorption capacity (qmax) of Pb2+ on CROF was 15.02 mg/g, and 97% of Pb2+ was adsorbed onto CROF after 25 min. CROF had a preferential adsorption of Pb2+. The protein secondary structures and carbon skeletons of CROF all worked in adsorption. The main Pb2+ adsorption mechanisms were pore filling, electrostatic attraction, Pb-π interaction, and surface complexation. Therefore, it is valuable as a biosorbent for the removal of Pb2+ from waterbodies.
Collapse
Affiliation(s)
- Lu-Sheng Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Xiao-Yu Feng
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Chang-Fa Qiu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Ling-Sheng Li
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Yu Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Xin-Yi Tao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Xin-Yue Li
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Zhao-Wen Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- School of Materials and Environmental Engineering, Chizhou University, Chizhou, 247000, People's Republic of China
| | - De-Ju Cao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|
5
|
Li J, Lin G, Zhong Z, Wang Z, Wang S, Fu L, Hu T. A novel magnetic Ti-MOF/chitosan composite for efficient adsorption of Pb(II) from aqueous solutions: Synthesis and investigation. Int J Biol Macromol 2024; 258:129170. [PMID: 38171446 DOI: 10.1016/j.ijbiomac.2023.129170] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
In this investigation, a composite material comprising Ti-MOF and chitosan, denoted as BD-MOF(Ti)@CS/Fe3O4, was successfully designed for the efficient adsorption of Pb(II) from aqueous solutions. A comprehensive array of characterization techniques, including SEM, XRD, BET, FT-IR, and XPS, were meticulously employed to scrutinize the structural attributes and morphological features of the Pb(II) adsorbent. Notably, the material exhibits adaptability to a broad pH range, with adsorption efficiency reaching 99 % between pH 3 and 6. Kinetic studies reveal that the adsorption process of Pb(II) by BD-MOF(Ti)@CS/Fe3O4 adheres closely to a pseudo-second-order kinetic model. Impressively, within a short duration of 40 min, the adsorption efficiency can reach 85 %. Furthermore, the adsorption isotherm aligns with the Hill isotherm model, signifying cooperative adsorption. This observation underscores the synergistic interplay among the functional groups on the surface of BD-MOF(Ti)@CS/Fe3O4 in capturing Pb(II). As per the Hill model, the theoretical maximum capacity was an impressive 944.9 mg/g. Thermodynamic assessments suggested that the adsorption process was spontaneous, entropy increasing and exothermic. Even in the presence of various interfering ions, BD-MOF(Ti)@CS/Fe3O4 exhibited robust adsorption performance, thereby affirming its utility in complex environments. Moreover, the material demonstrates noteworthy reusability, sustaining effective Pb(II) removal across five consecutive cycles in aqueous solutions.
Collapse
Affiliation(s)
- Jing Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Guo Lin
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Zhen Zhong
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Zeying Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Shixing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Likang Fu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Tu Hu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| |
Collapse
|
6
|
Ding X, Liu J, Shi H, Yi Z, Zhou L, Ren W, Shao P, Yang L, Zhao D, Wei Y, Luo X. Regulating steric hindrance in difunctionalized porous aromatic frameworks for the selective separation of Pb(II). iScience 2023; 26:108274. [PMID: 38026161 PMCID: PMC10665823 DOI: 10.1016/j.isci.2023.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Efficient and selective removal of Pb(II) from wastewater with complex matrix remains a challenging task. Porous aromatic frameworks (PAFs) with predesigned functional building blocks provide a favorable platform for the selective separation of Pb(II). Herein, the bifunctional SPAFs with the introduction of -OH and -SO3H were synthesized through rationally optimizing their steric hindrance. As a result, the SPAF-0.75 exhibits favorable adsorption capacity of Pb(II) (212.34 mg g-1), which is 22 times larger than pristine framework. Competition experiment indicates that SPAF-0.75 possess the selective removal of Pb(II) without interfering from co-existing metal ions. The removal rate of SPAF-0.75 still retain at 100% after six successive cycles. The DFT calculation illustrates that -OH and -SO3H are co-participate in the process of capturing Pb(II), revealing SPAF-0.75 preferred removal of Pb(II) owing to the lowest adsorption energy (ΔEab = -3.99 eV). This study extend the understanding of the structure-property relationship and facilitate new possibilities for PAFs.
Collapse
Affiliation(s)
- Xuan Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P.R. China
| | - Jiayi Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P.R. China
| | - Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P.R. China
| | - Zhou Yi
- School of Computational Science and Electronics, Hunan Institute of Engineering, Xiangtan 411104, P.R. China
| | - Lei Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P.R. China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P.R. China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P.R. China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P.R. China
| | - Derun Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P.R. China
| | - Yun Wei
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P.R. China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P.R. China
- School of Life Science, Jinggangshan University, Ji’an 343009, P.R. China
| |
Collapse
|
7
|
Qu J, Du Z, Lei Y, Li M, Peng W, Wang M, Liu J, Hu Q, Wang L, Wang Y, Zhang Y. Microwave-assisted one-pot preparation of magnetic cactus-derived hydrochar for efficient removal of lead(Ⅱ) and phenol from water: Performance and mechanism exploration. BIORESOURCE TECHNOLOGY 2023; 388:129789. [PMID: 37741577 DOI: 10.1016/j.biortech.2023.129789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
A novel magnetic hydrochar derived from cactus cladode (MW-MHC) was successfully synthesized through one-pot microwave-assisted process for efficiently removing lead(Pb)(Ⅱ) and phenol. From batch adsorption experiments, MW-MHC possessed the highest uptake amounts for Pb(Ⅱ) and phenol of 139.34 and 175.32 mg/g within 20 and 60 min, respectively. Moreover, the removal of Pb(Ⅱ) and phenol by MW-MHC remained essentially stable under the interference of different co-existing cations, presenting the excellent adaptability of MW-MHC. After three cycles of regeneration experiments, MW-MHC still had preferable adsorption performance and could be easily recycled, indicating its excellent reusability. Significantly, the uptake mechanisms of Pb(Ⅱ) on MW-MHC were regarded as chemical complexation, pore filling, precipitation, and electrostatic attraction. Meanwhile, the phenol uptake might be dominated by π-π interaction and hydrogen bonding. The above consequences revealed that MW-MHC with high removal performance was a promising adsorbent for remediating wastewater containing heavy metals and organics.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Zhaolin Du
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yue Lei
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Man Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei Peng
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mengning Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jie Liu
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Liu G, Li S, Shi C, Huo M, Lin Y. Progress in Research and Application of Metal-Organic Gels: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1178. [PMID: 37049272 PMCID: PMC10096755 DOI: 10.3390/nano13071178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In recent years, metal-organic gels (MOGs) have attracted much attention due to their hierarchical porous structure, large specific surface area, and good surface modifiability. Compared with MOFs, the synthesis conditions of MOGs are gentler and more stable. At present, MOGs are widely used in the fields of catalysis, adsorption, energy storage, electrochromic devices, sensing, analysis, and detection. In this paper, literature metrology and knowledge graph visualization analysis are adopted to analyze and summarize the literature data in the field of MOGs. The visualization maps of the temporal distribution, spatial distribution, authors and institutions' distribution, influence of highly cited literature and journals, keyword clustering, and research trends are helpful to clearly grasp the content and development trend of MOG materials research, point out the future research direction for scholars, and promote the practical application of MOGs. At the same time, the paper reviews the research and application progress of MOGs in recent years by combining keyword clustering, time lines, and emergence maps, and looks forward to their challenges, future development trend, and application prospects.
Collapse
Affiliation(s)
- Gen Liu
- School of Environment, Northeast Normal University, Changchun 130117, China
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Siwen Li
- School of Environment, Northeast Normal University, Changchun 130117, China
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chunyan Shi
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan
| | - Mingxin Huo
- School of Environment, Northeast Normal University, Changchun 130117, China
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yingzi Lin
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
9
|
Effect of CeO 2-Reinforcement on Pb Absorption by Coconut Coir-Derived Magnetic Biochar. Int J Mol Sci 2023; 24:ijms24031974. [PMID: 36768305 PMCID: PMC9916585 DOI: 10.3390/ijms24031974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Magnetic separable biochar holds great promise for the treatment of Pb2+-contaminated wastewater. However, the absorption effect of unmodified magnetic biochar is poor. Considering this gap in knowledge, CeO2-doped magnetic coconut coir biochar (Ce-MCB) and magnetic coconut coir biochar (MCB) for Pb2+ absorption were prepared by the impregnation method, and the efficiency of Ce-MCB for Pb2+ absorption was evaluated in comparison with MCB. Conducting the absorption experiments, the study provided theoretical support for the exploration of the absorption mechanism. The quantitative analysis exposed that the enhanced absorption capacity of Ce-MCB was attributed to the increase in oxygen-containing functional groups and mineral precipitation. The Langmuir and Freundlich isotherm model showed that Ce-MCB is a suitable adsorbent for Pb2+. The absorption characteristics of Ce-MCB was fit well with the pseudo-second-order (PSO) and Langmuir models, which revealed that the absorption of Pb2+ in water was monolayer chemisorption with a maximum theoretical adsorption capacity of 140.83 mg·g-1. The adsorption capacity of Ce-MCB for Pb(II) was sustained above 70% after four cycles. In addition, the saturation magnetization intensity of Ce-MCB was 7.15 emu·g-1, which was sufficient to separate out from the solution. Overall, Ce-MCB has wide application prospects in terms of biomass resources recycling and environmental conservation.
Collapse
|
10
|
Huo JB, Yu G. Layered Double Hydroxides Derived from MIL-88A(Fe) as an Efficient Adsorbent for Enhanced Removal of Lead (II) from Water. Int J Mol Sci 2022; 23:ijms232314556. [PMID: 36498884 PMCID: PMC9736997 DOI: 10.3390/ijms232314556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
The efficient removal of lead (II) from aqueous solution remains a big problem and the development of novel nanomaterials as adsorbents by various technologies to solve this problem is promising. This study contributed a novel nanostructure of MIL-88A-layered double hydroxides (LDHs) as the adsorbent for Pb2+, which was synthesized by a two-step solvothermal method with MIL-88A(Fe) as the precursor. The as-prepared material featured a chestnut-like core-shell structure, and exhibited excellent removal performance towards Pb2+ from water in comparison to MIL-88A(Fe) and LDHs (directly synthesized). The adsorption of Pb2+ by the MIL-88A-LDHs conformed to the pseudo-second-order kinetic model and the Langmuir and Freundlich isotherm models. The maximal adsorption capacity was 526.32, 625.00, and 909.09 mg g-1 at 278, 298, and 318 K, respectively. The thermodynamic parameters suggested that the adsorption was an endothermic, entropy-increasing, and spontaneous reaction. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface complexation was mostly responsible for Pb2+ elimination. The MIL-88A-LDHs can be readily regenerated and showed good cyclic performance towards Pb2+. Thus, the as-prepared MIL-88A-LDHs may hold promise for the elimination of aqueous heavy metals.
Collapse
Affiliation(s)
- Jiang-Bo Huo
- Laboratory of Environmental Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Guoce Yu
- Laboratory of Environmental Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Cui W, Li J, Han SD, Mu Y, Li JH, Pan J, Wang GM. Coordinate Anchoring of Mixed Luminophores in Two Isostructural Hybrid Layers to Achieve Tunable Room-Temperature Phosphorescence. Inorg Chem 2022; 61:17178-17184. [PMID: 36263997 DOI: 10.1021/acs.inorgchem.2c02699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Room-temperature phosphorescence (RTP) materials have widespread applications in biological imaging, anticounterfeiting, and optoelectronic devices. Because of the predesignability of metal-organic complexes (MOCs), the RTP materials based on MOC systems have received huge attention from researchers. The coordinate anchoring of luminophores to enhance the rigidity of organic molecules and restrict the nonradiative transition offers opportunities for generating MOC materials with captivating RTP performance. Hitherto, most of the MOC-based RTP materials feature a single luminophore ligand. The development of new MOC systems with RTP functionality is still challenging. Herein, we use the mixed-ligand synthetic strategy to produce isostructural MOCs, [Zn(TIMB)(X2-TPA)]·H2O (1, X = Cl; 2, X = Br; TIMB = 1,3,5-tris(2-methyl-1H-imidazol-1-yl)benzene; H2-X2-TPA = 2,5-dichloroterephthalic and 2,5-dibromoterephthalic acid), and modulate the RTP properties of resultant products via the synergy of coordinate anchoring and substitution synthesis. 1 and 2 feature similar coordination layers composed of neutral TIMB and anionic X2-TPA2- ligands, which provide a good structural model to tune the RTP performances of final products via substitution synthesis. Different from the reported RTP materials based on MOC systems, our study provides a general way to build and modulate MOC-based RTP materials with the assistance of coordinate anchoring and substitution synthesis strategies.
Collapse
Affiliation(s)
- Wei Cui
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Jie Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Ying Mu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Jin-Hua Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Jie Pan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| |
Collapse
|