1
|
Boulif N, Houben M, Borneman Z, Nijmeijer K. Using Layer-by-layer Assembled Clay Composite Junctions to Enhance the Water Dissociation in Bipolar Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24795-24807. [PMID: 39533785 PMCID: PMC11603776 DOI: 10.1021/acs.langmuir.4c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Bipolar membranes (BPMs) with a layer-by-layer (LbL) assembled montmorillonite (K30 MMT) clay-polyelectrolyte (PE) composite junction coated onto a sulfonated poly(ether ether ketone (SPEEK)) electrospun support are prepared, characterized and their water dissociation performance is analyzed. In particular, the focus is on the effect of the presence of the K30 MMT clay as a catalyst for water dissociation, the bilayer number (three, six, and nine), and the PE strength (poly(ethylenimine) (PEI) as a weak PE and poly(diallyl dimethylammonium chloride) (PDADMAC) as a strong PE) on the BPM performance. The BPMs are prepared by electrospinning and hot pressing SPEEK and the Fumion FAA-3 polymer. Adding the composite multilayers in the BPM junction decreases the membrane area resistance in reverse bias from 560 to 21 Ohms cm2 for the best-performing modified BPM. The bilayer number has limited influence on the overall membrane resistance, while the PDADMAC BPMs outperform the PEI BPMs due to the higher and more stable PE and clay adsorptions. Electrochemical impedance spectroscopy shows that the depletion layer thickness decreases exponentially with the number of bilayers as the water dissociation reaction becomes less dependent on the junction electric field. Furthermore, the higher Donnan exclusion at the modified junctions improves the BPM permselectivity 3-fold compared to the BPM containing no catalyst. Altogether, these improvements lead to 6.7 times less energy being used in BPM electrodialysis for the production of acid and base when a BPM with composite LBL junction is used compared to a BPM without catalyst. Thus, adding MMT clay composite LbL catalyst to BPM junctions is a promising method to improve the efficiency and reduce the energy consumption of electrochemical processes that rely on BPMs.
Collapse
Affiliation(s)
- Nadia Boulif
- Membrane Materials and Processes, Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Menno Houben
- Membrane Materials and Processes, Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Zandrie Borneman
- Membrane Materials and Processes, Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Kitty Nijmeijer
- Membrane Materials and Processes, Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
2
|
Adisasmito S, Khoiruddin K, Sutrisna PD, Wenten IG, Siagian UWR. Bipolar Membrane Seawater Splitting for Hydrogen Production: A Review. ACS OMEGA 2024; 9:14704-14727. [PMID: 38585051 PMCID: PMC10993265 DOI: 10.1021/acsomega.3c09205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
The growing demand for clean energy has spurred the quest for sustainable alternatives to fossil fuels. Hydrogen has emerged as a promising candidate with its exceptional heating value and zero emissions upon combustion. However, conventional hydrogen production methods contribute to CO2 emissions, necessitating environmentally friendly alternatives. With its vast potential, seawater has garnered attention as a valuable resource for hydrogen production, especially in arid coastal regions with surplus renewable energy. Direct seawater electrolysis presents a viable option, although it faces challenges such as corrosion, competing reactions, and the presence of various impurities. To enhance the seawater electrolysis efficiency and overcome these challenges, researchers have turned to bipolar membranes (BPMs). These membranes create two distinct pH environments and selectively facilitate water dissociation by allowing the passage of protons and hydroxide ions, while acting as a barrier to cations and anions. Moreover, the presence of catalysts at the BPM junction or interface can further accelerate water dissociation. Alongside the thermodynamic potential, the efficiency of the system is significantly influenced by the water dissociation potential of BPMs. By exploiting these unique properties, BPMs offer a promising solution to improve the overall efficiency of seawater electrolysis processes. This paper reviews BPM electrolysis, including the water dissociation mechanism, recent advancements in BPM synthesis, and the challenges encountered in seawater electrolysis. Furthermore, it explores promising strategies to optimize the water dissociation reaction in BPMs, paving the way for sustainable hydrogen production from seawater.
Collapse
Affiliation(s)
- Sanggono Adisasmito
- Department
of Chemical Engineering, Institut Teknologi
Bandung (ITB), Jalan
Ganesa No. 10, Bandung 40132, Indonesia
| | - Khoiruddin Khoiruddin
- Department
of Chemical Engineering, Institut Teknologi
Bandung (ITB), Jalan
Ganesa No. 10, Bandung 40132, Indonesia
| | - Putu D. Sutrisna
- Department
of Chemical Engineering, Universitas Surabaya
(UBAYA), Jalan Raya Kalirungkut (Tenggilis), Surabaya 60293, Indonesia
| | - I Gede Wenten
- Department
of Chemical Engineering, Institut Teknologi
Bandung (ITB), Jalan
Ganesa No. 10, Bandung 40132, Indonesia
| | - Utjok W. R. Siagian
- Department
of Petroleum Engineering, Institut Teknologi
Bandung (ITB), Jalan Ganesa No. 10, Bandung 40132, Indonesia
| |
Collapse
|
3
|
Al-Dhubhani E, Tedesco M, de Vos WM, Saakes M. Combined Electrospinning-Electrospraying for High-Performance Bipolar Membranes with Incorporated MCM-41 as Water Dissociation Catalysts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45745-45755. [PMID: 37729586 PMCID: PMC10561145 DOI: 10.1021/acsami.3c06826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Electrospinning has been demonstrated as a very promising method to create bipolar membranes (BPMs), especially as it allows three-dimensional (3D) junctions of entangled anion exchange and cation exchange nanofibers. These newly developed BPMs are relevant to demanding applications, including acid and base production, fuel cells, flow batteries, ammonia removal, concentration of carbon dioxide, and hydrogen generation. However, these applications require the introduction of catalysts into the BPM to allow accelerated water dissociation, and this remains a challenge. Here, we demonstrate a versatile strategy to produce very efficient BPMs through a combined electrospinning-electrospraying approach. Moreover, this work applies the newly investigated water dissociation catalyst of nanostructured silica MCM-41. Several BPMs were produced by electrospraying MCM-41 nanoparticles into the layers directly adjacent to the main BPM 3D junction. BPMs with various loadings of MCM-41 nanoparticles and BPMs with different catalyst positions relative to the junction were investigated. The membranes were carefully characterized for their structure and performance. Interestingly, the water dissociation performance of BPMs showed a clear optimal MCM-41 loading where the performance outpaced that of a commercial BPM, recording a transmembrane voltage of approximately 1.11 V at 1000 A/m2. Such an excellent performance is very relevant to fuel cell and flow battery applications, but our results also shed light on the exact function of the catalyst in this mode of operation. Overall, we demonstrate clearly that introducing a novel BPM architecture through a novel hybrid electrospinning-electrospraying method allows the uptake of promising new catalysts (i.e., MCM-41) and the production of very relevant BPMs.
Collapse
Affiliation(s)
- Emad Al-Dhubhani
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
- Membrane
Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Michele Tedesco
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Wiebe M. de Vos
- Membrane
Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Michel Saakes
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| |
Collapse
|
4
|
Mandal P, Goel P, E B, Chattopadhyay S. Ion transport facilitation through template based optimization of corrugation geometry over membrane surface. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Heterogenous bipolar membrane with amino methyl phosphonic acid functionalized cation exchange layer and montmorillonite nanoclay based interfacial layer. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Zhao D, Xu J, Sun Y, Li M, Zhong G, Hu X, Sun J, Li X, Su H, Li M, Zhang Z, Zhang Y, Zhao L, Zheng C, Sun X. Composition and Structure Progress of the Catalytic Interface Layer for Bipolar Membrane. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2874. [PMID: 36014740 PMCID: PMC9416193 DOI: 10.3390/nano12162874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Bipolar membranes, a new type of composite ion exchange membrane, contain an anion exchange layer, a cation exchange layer and an interface layer. The interface layer or junction is the connection between the anion and cation exchange layers. Water is dissociated into protons and hydroxide ions at the junction, which provides solutions to many challenges in the chemical, environmental and energy fields. By combining bipolar membranes with electrodialysis technology, acids and bases could be produced with low cost and high efficiency. The interface layer or junction of bipolar membranes (BPMs) is the connection between the anion and cation exchange layers, which the membrane and interface layer modification are vital for improving the performance of BPMs. This paper reviews the effect of modification of a bipolar membrane interface layer on water dissociation efficiency and voltage across the membrane, which divides into three aspects: organic materials, inorganic materials and newly designed materials with multiple components. The structure of the interface layer is also introduced on the performance of bipolar membranes. In addition, the remainder of this review discusses the challenges and opportunities for the development of more efficient, sustainable and practical bipolar membranes.
Collapse
Affiliation(s)
- Di Zhao
- School of Chemical Engineering, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Jinyun Xu
- School of Chemical Engineering, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Yu Sun
- School of Chemical Engineering, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Minjing Li
- School of Chemical Engineering, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Guoqiang Zhong
- School of Chemical Engineering, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Xudong Hu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Jiefang Sun
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Xiaoyun Li
- Advanced Materials Research Laboratory, CNOOC Tianjin Chemical Research and Design Institute, Tianjin 300131, China
| | - Han Su
- School of Chemical Engineering, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Ming Li
- School of Chemical Engineering, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Ziqi Zhang
- School of Chemical Engineering, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Yu Zhang
- School of Chemical Engineering, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Liping Zhao
- School of Chemical Engineering, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Chunming Zheng
- School of Chemical Engineering, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Xiaohong Sun
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Surface smoothening and formation of nano-channels improved mono-selectivity and antifouling property in TiO2 incorporated cation exchange membrane. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|