1
|
Liu Y, Song Y, Meng C, Jiang Z, Zhao J, Wang Y, Jiang K. Performance improvement of triple-doped nanocomposite membrane towards hairwork dyeing effluent reclamation approaching zero liquid discharge. CHEMOSPHERE 2024; 368:143725. [PMID: 39528130 DOI: 10.1016/j.chemosphere.2024.143725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/25/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
It is highly anticipated that efforts will be made to raise the level of industrial effluent reclamation on the background of continuously minimizing waste stream based on preconcentration tool. For this purpose, a triple-doped nanocomposite (TFN-tri) membrane through partially alternative doping spiro-structured 2,2'-dimethyl-1,1'-biphenyl-4,4'-diamine dihydrochloride and flexible 4,4'-bipiperidyl dihydrochloride and continuous incorporating of molybdenum disulfide quantum dots was successfully fabricated. With the assistance of self-synthesized biodegradable flocculant pretreatment, raw hairwork dyeing effluent (HDE) was stably recycled up to 95.1% on the premise of meeting the requirements of the relevant national standard. As a deep processing unit, TFN-tri membrane displayed accurate salt rejection of nearly 66% as expected. More impressively, it also exhibited permeability basically increased by 2.5 folds, while fouling layer thickness, running time and specific energy consumption decreased by 5 μm, 54.7% and 72.5%, respectively, than its counterpart in long-term reuse testing. These changes may mainly be due to the finely expand sub-nanopores coupled with an enhanced electrostatic exclusion and the improved fouling resistance brought about by other critical skin features in terms of smoothness and hydrophilicity optimization. In brief, this study has taken a vigorous and reliable step towards heavily polluted HDE reclamation approaching zero liquid discharge.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang, 453007, China
| | - Yuefei Song
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang, 453007, China.
| | - Chunchun Meng
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang, 453007, China
| | - Zuqiong Jiang
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang, 453007, China
| | - Junhao Zhao
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang, 453007, China
| | - Yanan Wang
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang, 453007, China
| | - Kai Jiang
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang, 453007, China.
| |
Collapse
|
2
|
Luo W, Wang C, Li X, Liu J, Hou D, Zhang X, Huang G, Lu X, Li Y, Zhou T. Advancements in defect engineering of two-dimensional nanomaterial-based membranes for enhanced gas separation. Chem Commun (Camb) 2024; 60:3745-3763. [PMID: 38525977 DOI: 10.1039/d4cc00201f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The advent of two-dimensional nanomaterials, a revolutionary class of materials, is marked by their atomic-scale thickness, superior aspect ratios, robust mechanical attributes, and exceptional chemical stability. These materials, producible on a large scale, are emerging as the forefront candidates in the domain of membrane-based gas separation. The concept of defect engineering in 2D nanomaterials has introduced a novel approach in their application for membrane separation, offering an effective technique to augment the performance of these membranes. Nonetheless, the development of customized microstructures in gas separation membranes via defect engineering remains nascent. Hence, this review is designed to serve as a comprehensive guide for the application of defect engineering in 2D nanomaterial-based membranes. It delves into the most recent developments in this field, encompassing the synthesis methodologies of defective 2D nanomaterials and the mechanisms underlying gas transport. Special emphasis is placed on the utilization of defect-engineered 2D nanomaterial-based membranes in gas capture applications. Furthermore, the paper encapsulates the burgeoning challenges and prospective advancements in this area. In essence, defect engineering emerges as a promising avenue for enhancing the efficacy of 2D nanomaterial-based membranes in gas separation, offering significant potential for advancements in membrane-based gas separation technologies.
Collapse
Affiliation(s)
- Wenjia Luo
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Changzheng Wang
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Xueguo Li
- Baiyin Nonferrous Group Company Limited Copper Company, Baiyin 730900, P. R. China
| | - Jian Liu
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Duo Hou
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Xi Zhang
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Guoxian Huang
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Xingwu Lu
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Yanlong Li
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Tao Zhou
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| |
Collapse
|
3
|
Wang Y, Sheng L, Zhang X, Li J, Wang R. Hybrid carbon molecular sieve membranes having ordered Fe3O4@ZIF-8-derived microporous structure for gas separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Zhang X, Ren X, Wang Y, Li J. ZIF-8@NENP-NH2 embedded mixed matrix composite membranes utilized as CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Introducing defect-engineering 2D layered MOF nanosheets into Pebax matrix for CO2/CH4 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Dai Y, Niu Z, Luo W, Wang Y, Mu P, Li J. A review on the recent advances in composite membranes for CO2 capture processes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|