1
|
Jiang Q, Li Y, Wang M, Cao W, Yang X, Zhang S, Guo L. Light energy utilization and microbial catalysis for enhanced biohydrogen: Ternary coupling system of triethanolamine-mediated Fe@C-Rhodobacter sphaeroides. BIORESOURCE TECHNOLOGY 2024; 401:130733. [PMID: 38670287 DOI: 10.1016/j.biortech.2024.130733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
This study investigated the mediating effect of Triethanolamine on Fe@C-Rhodobacter sphaeroides hybrid photosynthetic system to achieve efficient biohydrogen production. The biocompatible Fe@C generates excited electrons upon exposure to light, releasing ferrum for nitrogenase synthesis, and regulating the pH of the fermentation environment. Triethanolamine was introduced to optimize the electron transfer chain, thereby improving system stability, prolonging electron lifespan, and facilitating ferrum corrosion. This, in turn, stimulated the lactic acid synthetic metabolic pathway of Rhodobacter sphaeroides, resulting in increased reducing power in the biohybrid system. The ternary coupling system was analyzed through the regulation of concentration, initial pH, and light intensity. The system achieved the highest total H2 production of 5410.9 mL/L, 1.29 times higher than the control (2360.5 mL/L). This research provides a valuable strategy for constructing ferrum-carbon-based composite-cellular biohybrid systems for photo-fermentation H2 production.
Collapse
Affiliation(s)
- Qiushi Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Yanjing Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Minmin Wang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Wen Cao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China.
| | - Xueying Yang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Sihu Zhang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Liejin Guo
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| |
Collapse
|
2
|
Wang M, Wu B, Zheng Q, Yang P, Hu J, Zheng S. Highly effective removal of 4-chloroaniline in water by nano zero-valent iron cooperated with microbial degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134235. [PMID: 38608585 DOI: 10.1016/j.jhazmat.2024.134235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
The misuse of aromatic amines like 4-chloroaniline (4-CA) has led to severe environmental and health issues. However, it's difficult to be utilized by microorganisms for degradation. Nano-zero-valent iron (nZVI) is a promising material for the remediation of chloroaniline pollution, however, the synergistic effect and mechanism of nZVI with microorganisms for the degradation of 4-CA are still unclear. This study investigated the potential of 4-CA removal by the synergistic system involving nZVI and 4-CA degrading microbial flora. The results indicate that the addition of nZVI significantly enhanced the bio-degradation rate of 4-CA from 43.13 % to 62.26 %. Under conditions involving 0.1 % nZVI addition at a 24-hour interval, pH maintained at 7, and glucose as an external carbon source, the microbial biomass, antioxidant enzymes, and dehydrogenase were significantly increased, and the optimal 4-CA degradation rate achieved 68.79 %. Additionally, gas chromatography-mass spectrometry (GC-MS) analysis of intermediates indicated that the addition of nZVI reduced compounds containing benzene rings and enhanced the dechlorination efficiency. The microbial community remained stable during the 4-CA degradation process. This study illustrates the potential of nZVI in co-microbial remediation of 4-CA compounds in the environment.
Collapse
Affiliation(s)
- MeiQi Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Bin Wu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China.
| | - QingJuan Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Peng Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - JunQi Hu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shuai Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| |
Collapse
|
3
|
Zhang L, Gao J, Liu Y, Zhou Z, Sheng X, Li D, Chen Y, Lyu S. Ascorbic acid enhanced the circulation between Fe(II) and Fe(III) in peroxymonosulfate system for fluoranthene degradation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:1682-1700. [PMID: 38619897 DOI: 10.2166/wst.2024.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024]
Abstract
In this research, ascorbic acid (AA) was used to enhance Fe(II)/Fe(III)-activated permonosulfate (PMS) systems for the degradation of fluoranthene (FLT). AA enhanced the production of ROS in both PMS/Fe(II) and PMS/Fe(III) systems through chelation and reduction and thus improved the degradation performance of FLT. The optimal molar ratio in PMS/Fe(II)/AA/FLT and PMS/Fe(III)/AA/FLT processes were 2/2/4/1 and 5/10/5/1, respectively. In addition, the experimental results on the effect of FLT degradation under different groundwater matrixes indicated that PMS/Fe(III)/AA system was more adaptable to different water quality conditions than the PMS/Fe(II)/AA system. SO4·- was the major reactive oxygen species (ROS) responsible for FLT removal through the probe and scavenging tests in both systems. Furthermore, the degradation intermediates of FLT were analyzed using gas chromatograph-mass spectrometry (GC-MS), and the probable degradation pathways of FLT degradation were proposed. In addition, the removal of FLT was also tested in actual groundwater and the results showed that by increasing the dose and pre-adjusting the solution pH, 88.8 and 100% of the FLT was removed for PMS/Fe(II)/AA and PMS/Fe(III)/AA systems. The above experimental results demonstrated that PMS/Fe(II)/AA and PMS/Fe(III)/AA processes have a great perspective in practice for the rehabilitation of FLT-polluted groundwater.
Collapse
Affiliation(s)
- Longbin Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Jianxiong Gao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Yulong Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zhengyuan Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Xianxian Sheng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Dexiao Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Yuantian Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China E-mail:
| |
Collapse
|
4
|
Zhao X, Xu H, Chen M, Chen Y, Kong X. Enhancement of norfloxacin degradation by citrate in S-nZVI@Ps system: Chelation and FeS layer. ENVIRONMENTAL RESEARCH 2024; 245:117981. [PMID: 38142729 DOI: 10.1016/j.envres.2023.117981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/02/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
The degradation of organic pollution by sulfur-modified nano zero-valent iron(S-nZVI) combined with advanced oxidation systems has been extensively studied. However, the low utilization of nZVI and low reactive oxygen species (ROS) yield in the system have limited its wide application. Herein, a natural organic acid commonly found in citrus fruits, citric acid (CA), was combined with the conventional S-nZVI@Ps system to enhance the degradation of norfloxacin (NOR). The addition of CA increased the NOR removal by about 31% compared with the conventional S-nZVI@Ps system under the same experimental conditions. Among them, the enhanced effect of CA is mainly reflected in its ability to promote the release of Fe2+ and accelerate the cycling of Fe2+ and Fe3+ to further improve the utilization of nZVI and the generation of ROS; it also promotes the dissolution of the active substance (FeS) on the surface of S-nZVI to further improve the degradation rate of NOR. More importantly, the chelate of CA and Fe2+ (CA-Fe2+) had higher reactivity than alone Fe2+. Free radical quenching and electron spin resonance (ESR) experiments indicated that the main ROS for the degradation of NOR in the CA/S-nZVI@Ps system were SO4•- and OH•. CA-bound sulfur-modifying effects on NOR degradation was systematically investigated, and the degradation mechanism of NOR in CA/S-nZVI@Ps system was explored by various techniques. Additionally, the effect of common anions in water matrix on the degradation of NOR in CA/S-nZVI@Ps system and its degradation of various pollutants were also studied. This study provides a new perspective to enhance the degradation of pollutants by S-nZVI combined with advanced oxidation system, which can help to solve the application boundary problem of S-nZVI.
Collapse
Affiliation(s)
- Xuefang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Hui Xu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Minzhang Chen
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yong Chen
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiuqing Kong
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
5
|
Noubactep C, Kenmogne-Tchidjo JF, Vollmer S. Iron-fortified water: a new approach for reducing iron deficiency anemia in resource-constrained settings. Sci Rep 2023; 13:13565. [PMID: 37604937 PMCID: PMC10442336 DOI: 10.1038/s41598-023-40600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
A new approach for fortification of drinking water is presented for combating iron deficiency anemia (IDA) worldwide. The idea is to leach Fe from a bed containing granular metallic iron (Fe0), primarily using ascorbic acid (AA). AA forms very stable and bioavailable complexes with ferrous iron (FeII). Calculated amounts of the FeII-AA solution can be added daily to the drinking water of households or day-care centers for children and adults (e.g. hospitals, kindergartens/schools, refugee camps) to cover the Fe needs of the populations. Granular Fe0 (e.g., sponge iron) in filters is regarded as a locally available Fe carrier in low-income settings, and, AA is also considered to be affordable in low-income countries. The primary idea of this concept is to stabilize FeII from the Fe0 filter by using an appropriate AA solution. An experiment showed that up to 12 mg Fe can be daily leached from 1.0 g of a commercial sponge iron using a 2 mM AA solution. Fe fortification of safe drinking water is a practicable, affordable and efficient method for reducing IDA in low-income communities.
Collapse
Affiliation(s)
- Chicgoua Noubactep
- Centre for Modern Indian Studies (CeMIS), Universität Göttingen, Waldweg 26, 37073, Göttingen, Germany.
- Department of Water and Environmental Science and Engineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
- Faculty of Science and Technology, Campus of Banekane, Université des Montagnes, P.O. Box 208, Bangangté, Cameroon.
- School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, Nanjing, 211100, China.
| | | | - Sebastian Vollmer
- Centre for Modern Indian Studies (CeMIS), Universität Göttingen, Waldweg 26, 37073, Göttingen, Germany
| |
Collapse
|
6
|
Xu P, Wang L, Liu X, Xie S, Hou B. Vitamin C promoted refractory organic contaminant elimination in the zero-valent iron/peracetic acid system: Efficiency, mechanism and effects of various parameters. CHEMOSPHERE 2023; 326:138481. [PMID: 36958501 DOI: 10.1016/j.chemosphere.2023.138481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
The conventional zero-valent iron/peracetic acid (ZVI/PAA) system is severely limited owing to the passivation of ZVI and the low recovery of Fe2+. In this study, a reducing agent, vitamin C (H2A), was used for the first time to enhance the ZVI/PAA system as a way to improve its degradation performance. Under optimal conditions, the removal efficiency of the H2A/ZVI/PAA system was 82.9%, while that of the H2A/PAA and ZVI/PAA systems were only 19.0% and 25.6%. Free radical quenching and electron paramagnetic experiments (EPR) confirmed that CH3C(O)O•, •OH and CH3C(O)OO• were the major active species for acid orange 7 (AO7) degradation with contributions of 9.7%, 75% and 14.4%, respectively. The degradation mechanism was proposed through UV-vis full-wavelength scanning and chemical oxygen demand (COD) experiments. The removal of AO7 was not affected in the presence of Cl-, SO42- and HCO3-, while inhibition occurred with humic acid. ZVI exhibited excellent catalytic properties and stability, and the removal efficiency of AO7 exceeded 70% after three cycles. Additionally, the H2A/ZVI/PAA system showed good ability to remove AO7 in well water, lake water, river water and reservoir water, and the elimination efficiency of MO, DCF and ACE also exceeded 70%. Overall, this study contributes new cognition for enhancing the ZVI/PAA system to degrade contaminants, which is expected to achieve a cleaner water environment.
Collapse
Affiliation(s)
- Peng Xu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China.
| | - Lei Wang
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Xin Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Shiqi Xie
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Baolin Hou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|
7
|
Zhu S, Zhang Y, Zhang Z, Ai F, Zhang H, Li Y, Wang Y, Zhang Q. Ascorbic acid-mediated zero-valent iron enhanced hydrogen production potential of bean dregs and corn stover by photo fermentation. BIORESOURCE TECHNOLOGY 2023; 374:128761. [PMID: 36813048 DOI: 10.1016/j.biortech.2023.128761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Ascorbic acid was introduced to enhance the performance of zero-valent iron (Fe(0)) in hydrogen production by photo fermentation of bean dregs and corn stover. The highest hydrogen production of 664.0 ± 5.3 mL and hydrogen production rate of 34.6 ± 0.1 mL/h was achieved at 150 mg/L ascorbic acid, which was 10.1% and 11.5% higher than that of 400 mg/L Fe(0) alone. The supplement of ascorbic acid to Fe(0) system accelerated the formation of Fe(Ⅱ) in solution due to its reducing and chelating ability. Hydrogen production of Fe(0) and ascorbic acid-Fe(0) (AA-Fe(0)) systems at different initial pH (5, 6, 7, 8 and 9) was studied. Result showed that hydrogen produced from AA-Fe(0) system was improved by 2.7-27.5% compared with Fe(0) system. The maximum hydrogen production of 767.5 ± 2.8 mL was achieved with initial pH 9 in the AA-Fe(0) system. This study provided a strategy for enhancing biohydrogen production.
Collapse
Affiliation(s)
- Shengnan Zhu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Yang Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Fuke Ai
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Yaozhe Wang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China.
| |
Collapse
|
8
|
Li H, Li Y, Wang C, Han C, Xu K, Zhang Z, Zhong Q, Shi K, Xu Z, Yang S, Li S, He H, Song H, Zhang S. Improved degradation of iohexol using electro-enhanced activation of persulfate by a CuxO-loaded carbon felt with carbon nanotubes as an interlayer. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
9
|
Guo S, Chen M, You L, Wei Y, Cai C, Wei Q, Zhang H, Zhou K. 3D printed hierarchically porous zero-valent copper for efficient pollutant degradation through peroxymonosulfate activation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Fast degradation of florfenicol in SiC-Fe0 Fenton-like process: The overlooked role of atomic H* in peroxymonosulfate activation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|