1
|
Li F, Dong J, Sun T, Zhang P, Zhang Y, Zakhidov AA, Baughman RH, Xu L. Hierarchically Ordered Macro-/Mesoporous N,P-Codoped Carbon with Fe-Co Dual Sites for Efficient Electrocatalytic Oxygen Reduction. Chem Asian J 2025:e202401761. [PMID: 39988554 DOI: 10.1002/asia.202401761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 02/25/2025]
Abstract
The development of high-performance, low-cost non-precious-metal electrocatalysts as alternatives to Pt-based catalysts for the oxygen reduction reaction (ORR) is crucial for promoting the commercial application of fuel cells and metal-air batteries. In this work, we report a novel type of ORR electrocatalyst with Fe and Co sites anchored on N,P-codoped hierarchically ordered macro-/mesoporous carbon (FeCo/NP-HOMMC) through a facile one-pot, controllable synthesis method with the aid of dual-templating technique. The FeCo/NP-HOMMC catalyst shows robust ORR performance under alkaline conditions with a half-wave potential (E1/2) of 0.90 V vs. reversible hydrogen electrode (RHE), significantly surpassing the commercial 20 wt% Pt/C catalyst, while also exhibiting remarkable long-term stability and great methanol tolerance. Control experiments reveal that the superior performance of the FeCo/NP-HOMMC catalyst for ORR benefits from the synergistic catalysis of highly dispersed Fe and Co dual active sites, and the advantages of the unique hierarchically ordered macro-/mesoporous structure, which can provide improved active site accessibility, excellent conductivity, and maximized mass/charge transport.
Collapse
Affiliation(s)
- Fulin Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jing Dong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tingting Sun
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Pianpian Zhang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yixin Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Anvar A Zakhidov
- The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas, 75083, United States
| | - Ray H Baughman
- The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas, 75083, United States
| | - Lianbin Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Li C, Yang X, Kou Y, Song H, Li X, Wu C, Fang T, Gou J, Ma J, Guan X, Tong J. Low-Level Fe Doping in CoMoO 4 Enhances Surface Reconstruction and Electronic Modulation Creating an Outstanding OER Electrocatalyst for Water Splitting. Inorg Chem 2025; 64:2508-2517. [PMID: 39878563 DOI: 10.1021/acs.inorgchem.4c05100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Efficient and stable nonprecious metal-based oxygen evolution reaction (OER) electrocatalysts are pivotal for water electrolysis technology. Herein, we are reporting an effective strategy for fabricating efficient Co-based OER electrocatalysts by low-level Fe doping in CoMoO4 to boost surface reconstruction and electronic modulation, which resulted in excellent OER electroactivity consequently. Our findings reveal that a mere 5.30% (wt %) of Fe doping can raise the O 2p band center energy nearer to the Fermi level, reduce the energy barrier for oxygen vacancy (VO) formation, and significantly enhance OER electrocatalytic activity. Additionally, the fast dissolution of Mo in the initial reaction facilitated surface reconstruction to form active oxyhydroxide species and stabilized Fe and Co from leaching. As a result, the optimized catalyst Fe-CoMoO4-0.2 exhibited a low overpotential of 276 mV at 10 mA cm-2 in 1 M KOH and can operate stably at a current density of 20 mA cm-2 for at least 24 h under water splitting conditions. This work provides an excellent example of regulating the surface structure and electronic properties of the OER catalysts.
Collapse
Affiliation(s)
- Chengzhuo Li
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Xiaolu Yang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Yingnan Kou
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Haoyu Song
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Xiaowei Li
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Chaoying Wu
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Tian Fang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Jianmin Gou
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Jiangping Ma
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Xiaolin Guan
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Jinhui Tong
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| |
Collapse
|
3
|
Yang T, Zhang Z, Tan F, Liu H, Li X, Wang H, Yang Q. Graphene Supported NiFe-LDH and PbO 2 Catalysts Prepared by Plasma Process for Oxygen Evolution Reaction. MATERIALS (BASEL, SWITZERLAND) 2024; 18:121. [PMID: 39795765 PMCID: PMC11721827 DOI: 10.3390/ma18010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
The development of efficient catalysts for water electrolysis is crucial for advancing the low-carbon transition and addressing the energy crisis. This work involves the fabrication of graphene-based catalysts for the oxygen evolution reaction (OER) by integrating NiFe-LDH and PbO2 onto graphene using plasma treatment. The plasma process takes only 30 min. Graphene's two-dimensional structure increases the available reaction surface area and improves surface electron transport. Plasma treatment further improves catalyst performance by facilitating nanoparticle attachment and creating carbon defects and sulfur vacancies. Density functional theory (DFT) calculations at the PBE provide valuable insights into the role of vacancies in enhancing catalyst performance for OER. The catalyst's conductivity and electronic structure are greatly impacted by vacancies. While modifications to the electronic structure increase the kinetics of charge transfer, the vacancy structure can produce more active sites and improve the adsorption and reactivity of OER intermediates. This optimization of intermediate adsorption and electronic properties leads to increased overall OER activity. The catalyst NiFe-PbO2/S/rGO-45, synthesized through plasma treatment, demonstrated an overpotential of 230 mV at 50 mA·cm-2 and a Tafel slope of 44.26 mV dec-1, exhibiting rapid reaction kinetics and surpassing the OER activity of commercial IrO2. With its excellent performance, the prepared catalyst has broad prospects in commercial applications such as water electrolysis and air batteries.
Collapse
Affiliation(s)
- Tingting Yang
- State Grid Chongqing Electric Power Company Material Branch, Chongqing 401120, China
| | - Zheng Zhang
- State Grid Chongqing Electric Power Company Material Branch, Chongqing 401120, China
| | - Fei Tan
- State Grid Chongqing Electric Power Company Material Branch, Chongqing 401120, China
| | - Huayu Liu
- State Grid Chongqing Electric Power Company Material Branch, Chongqing 401120, China
| | - Xingyu Li
- State Grid Chongqing Electric Power Company Material Branch, Chongqing 401120, China
| | - Hongqi Wang
- Chongqing Jie Chuang Electric Power Technology Company Ltd., Chongqing 400031, China
| | - Qing Yang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
4
|
Li W, Liu Y, Chen Z, Peng B, Ma Q, Yue D, Zhang B, Qin B, Wang Z, Zhang Y, Lu S. Constructing heterogeneous interface between Co 3O 4 and RuO 2 with enhanced electronic regulation for efficient oxygen evolution reaction at large current density. J Colloid Interface Sci 2024; 670:272-278. [PMID: 38763023 DOI: 10.1016/j.jcis.2024.05.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/05/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Exploring effective strategies for developing new high-efficiency catalysts for water splitting is essential for advancing hydrogen energy technology. Herein, Co3O4/RuO2 heterojunction interface is construct through ion exchange reaction and pyrolysis. The as-synthesized Co3O4/RuO2-4 exhibits outstanding oxygen evolution reaction (OER) activity at the current density of 100 mA cm-2 with a low overpotential of 276 mV, and remarkable stability (maintaining activity for 60 h at 100 mA cm-2). Experimental results and theoretical calculations reveal that the electrons around the heterogeneous interface transferred from RuO2 to Co3O4, resulting in electron redistribution and optimization of energy barriers for OER intermediates. This unique composite catalyst structure offers a new potential for designing efficient oxygen electrocatalysts at large current density.
Collapse
Affiliation(s)
- Weidong Li
- College of Material Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou, 451191, China
| | - Yuan Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou City 450001, China.
| | - Zhihui Chen
- College of Material Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou, 451191, China
| | - Binqiong Peng
- College of Material Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou, 451191, China
| | - Qiang Ma
- College of Material Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou, 451191, China
| | - Dan Yue
- College of Material Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou, 451191, China
| | - Bing Zhang
- College of Material Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou, 451191, China
| | - Bowen Qin
- College of Material Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou, 451191, China
| | - Zhenling Wang
- College of Material Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou, 451191, China.
| | - Yilei Zhang
- Department of Mechanical Engineering, University of Canterbury, New Zealand
| | - Siyu Lu
- College of Chemistry, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City 450001, China.
| |
Collapse
|
5
|
Tu J, Zhang M, Li M, Li M, Li J, Zhi L. Phosphorus-doped nickel cobalt oxide (NiCo 2O 4) wrapped in 3D hierarchical hollow N-doped carbon nanoflowers as highly efficient bifunctional electrocatalysts for overall water splitting. J Colloid Interface Sci 2024; 668:243-251. [PMID: 38678880 DOI: 10.1016/j.jcis.2024.04.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Properly design and fabricate capable electrocatalysts with 3D hierarchical hollow framework to realize cost-effective and efficacious overall water splitting (OWS) are particularly meaningful for the large-scale arrangement of pivotal energy technology. In this study, P-doped NiCo2O4 nanoparticles encapsulated in N-doped carbon hierarchical hollow nanoflowers (P-NiCo2O4@NCHHNFs) were constructed using the hydrothermal-pyrolysis-phosphorization approach. This fascinating architecture can not merely serve as a conductive pathway for electron transfer, but at the same time effectively inhibited the aggregation and corrosion of the NiCo2O4 nanoparticles. Additionally, the P doping not only regulates electronic structure configuration to boost the intrinsic activity of the catalyst, but also enhance electrochemical surface areas to reveal more accessible active sites. Attributing to these characteristics, the as-prepared P-NiCo2O4@NCHHNFs exhibit preeminent electrocatalytic performance with low overpotentials of 283 mV and 162 mV for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) (at 10 mA cm-2), respectively. Specifically, by using the P-NiCo2O4@NCHHNFs as bifunctional catalysts, a low potential of 1.56 V (at 10 mA cm-2) is sufficient to drive overall water splitting with splendid durability. This study proposed an innovative strategy for the conceiving and fabricating high-performance catalysts via heteroatom-doping.
Collapse
Affiliation(s)
- Jibing Tu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Mingming Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Min Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Min Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Jiaxuan Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Lihua Zhi
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
6
|
Saha P, Shaheen Shah S, Ali M, Nasiruzzaman Shaikh M, Aziz MA, Saleh Ahammad AJ. Cobalt Oxide-Based Electrocatalysts with Bifunctionality for High-Performing Rechargeable Zinc-Air Batteries. CHEM REC 2024; 24:e202300216. [PMID: 37651034 DOI: 10.1002/tcr.202300216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/16/2023] [Indexed: 09/01/2023]
Abstract
In recent years, the rapid growth in renewable energy applications has created a significant demand for efficient energy storage solutions on a large scale. Among the various options, rechargeable zinc-air batteries (ZABs) have emerged as an appealing choice in green energy storage technology due to their higher energy density, sustainability, and cost-effectiveness. Regarding this fact, a spotlight is shaded on air electrode for constructing high-performance ZABs. Cobalt oxide-based electrocatalysts on the air electrode have gained significant attention due to their extraordinary features. Particularly, exploration and integration of bifunctional behavior for energy storage has remarkably promoted both ORR and OER to facilitate the overall performance of the battery. The plot of this review is forwarded towards in-depth analysis of the latest advancements in electrocatalysts that are based on cobalt oxide and possess bifunctional properties along with an introduction of the fundamental aspects of ZABs, Additionally, the topic entails an examination of the morphological variations and mechanistic details mentioning about the synthesis processes. Finally, a direction is provided for future research endeavors through addressing the challenges and prospects in the advancement of next-generation bifunctional electrocatalysts to empower high-performing ZABs with bifunctional cobalt oxide.
Collapse
Affiliation(s)
- Protity Saha
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
- present address: Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, 1216, Bnagladesh
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Muhammad Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
7
|
He X, Qiao T, Zhang Z, Liu H, Wang S, Wang X. Carbon cloth supporting spinel CuMn 0.5Co 2O 4 nanoneedles with the regulated electronic structure by multiple metal elements as catalysts for efficient oxygen evolution reaction. J Colloid Interface Sci 2023; 649:635-645. [PMID: 37364463 DOI: 10.1016/j.jcis.2023.06.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Developing transition metal oxide catalysts to replace the noble metal oxide catalysts for efficient oxygen evolution reaction (OER) is essential to promote the practical application of water splitting. Herein, we designed and constructed the carbon cloth (CC) supporting spinel CuMn0.5Co2O4 nanoneedles with regulated electronic structure by multiple metal elements with variable chemical valences in the spinel CuMn0.5Co2O4. The carbon cloth not only provided good conductivity for the catalytic reaction but also supported the well-standing spinel CuMn0.5Co2O4 nanoneedles arrays with a large special surface area. Meanwhile, the well-standing nanoneedles arrays and mesoporous structure of CuMn0.5Co2O4 nanoneedles enhanced their wettability and facilitated access for electrolyte to electrochemical catalysis. Besides, the regulated electronic structure and generated oxygen vacancies of CuMn0.5Co2O4/CC by multiple metal elements improved the intrinsic catalytic activity and the durability of OER activity. Profiting from these merits, the CuMn0.5Co2O4/CC electrode exhibited superior OER activity with an ultralow overpotential of 189 mV at the current density of 10 mA⋅cm-2 and a smaller Tafel slope of 64.1 mV⋅dec-1, which was competitive with the noble metal oxides electrode. And the CuMn0.5Co2O4/CC electrode also exhibited long-term durability for OER with 95.3% of current retention after 1000 cycles. Therefore, the competitive OER activity and excellent cycling durability suggested that the CuMn0.5Co2O4/CC electrode is a potential candidate catalyst for efficient OER.
Collapse
Affiliation(s)
- Xuanmeng He
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China.
| | - Tong Qiao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Zeqin Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Hui Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Shaolan Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Xinzhen Wang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, PR China
| |
Collapse
|
8
|
Simply embedding α-Fe2O3/Fe3O4 nanoparticles in N-doped graphitic carbon polyhedron layered arrays as excellent electrocatalyst for rechargeable Zn-air battery. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|