1
|
Melo RLF, Sales MB, de Castro Bizerra V, de Sousa Junior PG, Cavalcante ALG, Freire TM, Neto FS, Bilal M, Jesionowski T, Soares JM, Fechine PBA, Dos Santos JCS. Recent applications and future prospects of magnetic biocatalysts. Int J Biol Macromol 2023; 253:126709. [PMID: 37696372 DOI: 10.1016/j.ijbiomac.2023.126709] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Magnetic biocatalysts combine magnetic properties with the catalytic activity of enzymes, achieving easy recovery and reuse in biotechnological processes. Lipases immobilized by magnetic nanoparticles dominate. This review covers an advanced bibliometric analysis and an overview of the area, elucidating research advances. Using WoS, 34,949 publications were analyzed and refined to 450. The prominent journals, countries, institutions, and authors that published the most were identified. The most cited articles showed research hotspots. The analysis of the themes and keywords identified five clusters and showed that the main field of research is associated with obtaining biofuels derived from different types of sustainable vegetable oils. The overview of magnetic biocatalysts showed that these materials are also employed in biosensors, photothermal therapy, environmental remediation, and medical applications. The industry shows a significant interest, with the number of patents increasing. Future studies should focus on immobilizing new lipases in unique materials with magnetic profiles, aiming to improve the efficiency for various biotechnological applications.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Bloco 729, Fortaleza CEP 60440-554, CE, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil
| | - Misael Bessa Sales
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Viviane de Castro Bizerra
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Paulo Gonçalves de Sousa Junior
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza CEP 60455-760, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza CEP 60455-760, CE, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil; Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza CEP 60455-760, CE, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455-760, CE, Brazil
| | - Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233 Gdansk, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró CEP 59610-090, RN, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil; Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza CEP 60455-760, CE, Brazil
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790-970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455-760, CE, Brazil.
| |
Collapse
|
2
|
Kumari M, Acharya A, Krishnamurthy PT. Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:912-926. [PMID: 37701520 PMCID: PMC10494237 DOI: 10.3762/bjnano.14.75] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023]
Abstract
Nanotechnology provides effective methods for precisely delivering chemotherapeutics to cancer cells, thereby improving efficacy and reducing off-target side effects. The targeted delivery of nanoscale chemotherapeutics is accomplished by two different approaches, namely the exploitation of leaky tumor vasculature (EPR effect) and the surface modification of nanoparticles (NPs) with various tumor-homing peptides, aptamers, oligonucleotides, and monoclonal antibodies (mAbs). Because of higher binding affinity and specificity, mAbs have received a lot of attention for the detection of selective cancer biomarkers and also for the treatment of various types of cancer. Antibody-conjugated nanoparticles (ACNPs) are an effective targeted therapy for the efficient delivery of chemotherapeutics specifically to the targeted cancer cells. ACNPs combine the benefits of NPs and mAbs to provide high drug loads at the tumor site with better selectivity and delivery efficiency. The mAbs on the NP surfaces recognize their specific receptors expressed on the target cells and release the chemotherapeutic agent in a controlled manner. Appropriately designed and synthesized ACNPs are essential to fully realize their therapeutic benefits. In blood stream, ACNPs instantly interact with biological molecules, and a protein corona is formed. Protein corona formation triggers an immune response and affects the targeting ability of the nanoformulation. In this review, we provide recent findings to highlight several antibody conjugation methods such as adsorption, covalent conjugation, and biotin-avidin interaction. This review also provides an overview of the many effects of the protein corona and the theranostic applications of ACNPs for the treatment of cancer.
Collapse
Affiliation(s)
- Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
5
|
Arafa KK, Ibrahim A, Mergawy R, El-Sherbiny IM, Febbraio F, Hassan RYA. Advances in Cancer Diagnosis: Bio-Electrochemical and Biophysical Characterizations of Cancer Cells. MICROMACHINES 2022; 13:mi13091401. [PMID: 36144024 PMCID: PMC9504238 DOI: 10.3390/mi13091401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 05/09/2023]
Abstract
Cancer is a worldwide leading cause of death, and it is projected that newly diagnosed cases globally will reach 27.5 million each year by 2040. Cancers (malignant tumors), unlike benign tumors are characterized by structural and functional dedifferentiation (anaplasia), breaching of the basement membrane, spreading to adjacent tissues (invasiveness), and the capability to spread to distant sites (metastasis). In the cancer biology research field, understanding and characterizing cancer metastasis as well as features of cell death (apoptosis) is considered a technically challenging subject of study and clinically is very critical and necessary. Therefore, in addition to the cytochemical methods traditionally used, novel biophysical and bioelectrochemical techniques (e.g., cyclic voltammetry and electrochemical impedance spectroscopy), atomic force microscopy, and electron microscopic methods are increasingly being deployed to better understand these processes. Implementing those methods at the preclinical level enables the rapid screening of new anticancer drugs with understanding of their central mechanism for cancer therapy. In this review, principles and basic concepts of new techniques suggested for metastasis, and apoptosis examinations for research purposes are introduced, along with examples of each technique. From our recommendations, the privilege of combining the bio-electrochemical and biosensing techniques with the conventional cytochemical methods either for research or for biomedical diagnosis should be emphasized.
Collapse
Affiliation(s)
- Kholoud K. Arafa
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Alaa Ibrahim
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Reem Mergawy
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ibrahim M. El-Sherbiny
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Rabeay Y. A. Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
- Correspondence: ; Tel.: +20-1129216152
| |
Collapse
|
7
|
Le Wee J, Law MC, Chan YS, Choy SY, Tiong ANT. The Potential of Fe‐Based Magnetic Nanomaterials for the Agriculture Sector. ChemistrySelect 2022. [DOI: 10.1002/slct.202104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia Le Wee
- Department of Chemical and Energy Engineering Faculty of Engineering and Science Curtin University Malaysia CDT 250 98009 Miri Sarawak Malaysia
| | - Ming Chiat Law
- Department of Mechanical Engineering Faculty of Engineering and Science Curtin University Malaysia CDT 250 98009 Miri Sarawak Malaysia
| | - Yen San Chan
- Department of Chemical and Energy Engineering Faculty of Engineering and Science Curtin University Malaysia CDT 250 98009 Miri Sarawak Malaysia
| | - Sook Yan Choy
- Department of Chemical and Energy Engineering Faculty of Engineering and Science Curtin University Malaysia CDT 250 98009 Miri Sarawak Malaysia
| | - Angnes Ngieng Tze Tiong
- Department of Chemical and Energy Engineering Faculty of Engineering and Science Curtin University Malaysia CDT 250 98009 Miri Sarawak Malaysia
| |
Collapse
|
9
|
Flores-Hernandez DR, Santamaria-Garcia VJ, Melchor-Martínez EM, Sosa-Hernández JE, Parra-Saldívar R, Bonilla-Rios J. Paper and Other Fibrous Materials-A Complete Platform for Biosensing Applications. BIOSENSORS 2021; 11:128. [PMID: 33919464 PMCID: PMC8143474 DOI: 10.3390/bios11050128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/22/2023]
Abstract
Paper-based analytical devices (PADs) and Electrospun Fiber-Based Biosensors (EFBs) have aroused the interest of the academy and industry due to their affordability, sensitivity, ease of use, robustness, being equipment-free, and deliverability to end-users. These features make them suitable to face the need for point-of-care (POC) diagnostics, monitoring, environmental, and quality food control applications. Our work introduces new and experienced researchers in the field to a practical guide for fibrous-based biosensors fabrication with insight into the chemical and physical interaction of fibrous materials with a wide variety of materials for functionalization and biofunctionalization purposes. This research also allows readers to compare classical and novel materials, fabrication techniques, immobilization methods, signal transduction, and readout. Moreover, the examined classical and alternative mathematical models provide a powerful tool for bioanalytical device designing for the multiple steps required in biosensing platforms. Finally, we aimed this research to comprise the current state of PADs and EFBs research and their future direction to offer the reader a full insight on this topic.
Collapse
Affiliation(s)
| | | | | | | | | | - Jaime Bonilla-Rios
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico; (D.R.F.-H.); (V.J.S.-G.); (E.M.M.-M.); (J.E.S.-H.); (R.P.-S.)
| |
Collapse
|
10
|
Ghosh G, Panicker L. Protein-nanoparticle interactions and a new insight. SOFT MATTER 2021; 17:3855-3875. [PMID: 33885450 DOI: 10.1039/d0sm02050h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The study of protein-nanoparticle interactions provides knowledge about the bio-reactivity of nanoparticles, and creates a database of nanoparticles for applications in nanomedicine, nanodiagnosis, and nanotherapy. The problem arises when nanoparticles come in contact with physiological fluids such as plasma or serum, wherein they interact with the proteins (or other biomolecules). This interaction leads to the coating of proteins on the nanoparticle surface, mostly due to the electrostatic interaction, called 'corona'. These proteins are usually partially unfolded. The protein corona can deter nanoparticles from their targeted functionalities, such as drug/DNA delivery at the site and fluorescence tagging of diseased tissues. The protein corona also has many repercussions on cellular intake, inflammation, accumulation, degradation, and clearance of the nanoparticles from the body depending on the exposed part of the proteins. Hence, the protein-nanoparticle interaction and the configuration of the bound-proteins on the nanosurface need thorough investigation and understanding. Several techniques such as DLS and zeta potential measurement, UV-vis spectroscopy, fluorescence spectroscopy, circular dichroism, FTIR, and DSC provide valuable information in the protein-nanoparticle interaction study. Besides, theoretical simulations also provide additional understanding. Despite a lot of research publications, the fundamental question remained unresolved. Can we aim for the application of functional nanoparticles in medicine? A new insight, given by us, in this article assumes a reasonable solution to this crucial question.
Collapse
Affiliation(s)
- Goutam Ghosh
- UGC-DAE Consortium for Scientific Research, Mumbai Centre, Mumbai 400 085, India.
| | | |
Collapse
|