1
|
Zhang C, Liu R, Liu R, Cui W, Sun Y, Yang WD. Ultrasonically assisted fabrication of electrochemical platform for tinidazole detection. ULTRASONICS SONOCHEMISTRY 2024; 110:107056. [PMID: 39232289 PMCID: PMC11403520 DOI: 10.1016/j.ultsonch.2024.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Based on sonochemistry, green synthesis methods play an important role in the development of nanomaterials. In this work, a novel chitosan modified MnMoO4/g-C3N4 (MnMoO4/g-C3N4/CHIT) was developed using ultrasonic cell disruptor (500 W, 30 kHz) for ultra-sensitive electrochemical detection of tinidazole (TNZ) in the environment. The morphology and surface properties of the synthesized MnMoO4/g-C3N4/CHIT electrode were characterized using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscope (TEM). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques were utilized to assess the electrochemical performance of TNZ. The results indicate that the electrochemical detection performance of TNZ is highly efficient, with a detection limit (LOD) of 3.78 nM, sensitivity of 1.320 µA·µM-1·cm-2, and a detection range of 0.1-200 μM. Additionally, the prepared electrode exhibits excellent selectivity, desirable anti-interference capability, and decent stability. MnMoO4/g-C3N4/CHIT can be successfully employed to detect TNZ in both the Songhua River and tap water, achieving good recovery rates within the range of 93.0 % to 106.6 %. Consequently, MnMoO4/g-C3N4/CHIT's simple synthesis might provide a new electrode for the sensitive, repeatable, and selective measurement of TNZ in real-time applications. Using the MnMoO4/g-C3N4/CHIT electrode can effectively monitor and detect the concentration of TNZ in environmental water, guiding the sewage treatment process and reducing the pollution level of antibiotics in the water environment.
Collapse
Affiliation(s)
- Chaojun Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Rijia Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Wenyu Cui
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Wein-Duo Yang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| |
Collapse
|
2
|
Sawkar RR, Shanbhag MM, Tuwar SM, Mondal K, Shetti NP. Sodium Dodecyl Sulfate-Mediated Graphene Sensor for Electrochemical Detection of the Antibiotic Drug: Ciprofloxacin. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7872. [PMID: 36431357 PMCID: PMC9696905 DOI: 10.3390/ma15227872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The present study involves detecting and determining CIP by a new electrochemical sensor based on graphene (Gr) in the presence of sodium dodecyl sulfate (SDS) employing voltammetric techniques. Surface morphology studies of the sensing material were analyzed using a scanning electron microscope (SEM) and atomic force microscope (AFM). In the electroanalysis of CIP at the developed electrode, an enhanced anodic peak response was recorded, suggesting the electro-oxidation of CIP at the electrode surface. Furthermore, we evaluated the impact of the electrolytic solution, scan rate, accumulation time, and concentration variation on the electrochemical behavior of CIP. The possible electrode mechanism was proposed based on the acquired experimental information. A concentration variation study was performed using differential pulse voltammetry (DPV) in the lower concentration range, and the fabricated electrode achieved a detection limit of 2.9 × 10-8 M. The proposed sensor detected CIP in pharmaceutical and biological samples. The findings displayed good recovery, with 93.8% for tablet analysis and 93.3% to 98.7% for urine analysis. The stability of a developed electrode was tested by inter- and intraday analysis.
Collapse
Affiliation(s)
- Rakesh R. Sawkar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India
| | - Mahesh M. Shanbhag
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi 580027, Karnataka, India
| | - Suresh M. Tuwar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India
| | - Kunal Mondal
- Idaho National Laboratory, Idaho Falls, ID 83415, USA
- Department of Civil & Environmental Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Nagaraj P. Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| |
Collapse
|
3
|
Sawkar RR, Shanbhag MM, Tuwar SM, Veerapur RS, Shetti NP. Glucose Incorporated Graphite Matrix for Electroanalysis of Trimethoprim. BIOSENSORS 2022; 12:909. [PMID: 36291048 PMCID: PMC9599278 DOI: 10.3390/bios12100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The antibiotic drug trimethoprim (TMP) is used to treat bacterial infections in humans and animals, and frequently TMP is used along with sulfonamides. However, a large portion of TMP is excreted in its active state, which poses a severe problem to humans and the environment. A sensitive, rapid, cost-effective analytical tool is required to monitor the TMP concentration in biological and environmental samples. Hence, this study proposed an analytical methodology to analyze TMP in clinical, biological and environmental samples. The investigations were carried out using a glucose-modified carbon paste electrode (G-CPE) employing voltammetric techniques. Electrochemical behavior was examined with 0.5 mM TMP solution at optimum pH 3.4 (Phosphate Buffer Solution, I = 0.2 M). The influence of scan rate on the electro-oxidation of TMP was studied within the range of 0.05 to 0.55 V/s. The effect of pH and scan rate variations revealed proton transfer during oxidation. Moreover, diffusion phenomena governed the irreversibility of the electrode reaction. A probable and suitable electrode interaction and reaction mechanism was proposed for the electrochemical oxidation of TMP. Further, the TMP was quantitatively estimated with the differential pulse voltammetry (DPV) technique in the concentration range from 9.0 × 10-7 to 1.0 × 10-4 M. The tablet, spiked water and urine analysis demonstrated that the selected method and developed electrode were rapid, simple, sensitive, and cost-effective.
Collapse
Affiliation(s)
- Rakesh R. Sawkar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, India
| | - Mahesh M. Shanbhag
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi 580027, India
| | - Suresh M. Tuwar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, India
| | - Ravindra S. Veerapur
- Department of Metallurgy & Materials Engineering, Malawi Institute of Technology, Malawi University of Science and Technology, Limbe 5196, Malawi
| | - Nagaraj P. Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, India
- University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, India
| |
Collapse
|
4
|
Zinc Oxide–Graphene Nanocomposite-Based Sensor for the Electrochemical Determination of Cetirizine. Catalysts 2022. [DOI: 10.3390/catal12101166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A nanocomposite electrode of graphene (Gr) and zinc oxide (ZnO) nanoparticles was fabricated to study the electrochemical oxidation behavior of an anti-inflammatory drug, i.e., cetirizine (CET). The voltametric response of CET for bare CPE, Gr/CPE, ZnO/CPE, and the ZnO-Gr nanocomposite electrode was studied. The modifier materials were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD) to comprehend the surface morphology of the utilized modifiers. The influence of pH, scan rate, and accumulation time on the electrooxidation of CET was examined. It was found that the electrochemical oxidation of CET was diffusion-controlled, in which two protons and two electrons participated. The detection limit was found to be 2.8 × 10−8 M in a linearity range of 0.05–4.0 µM. Study of excipients was also performed, and it was found that they had negligible interference with the peak potential of CET. The validation and utility of the fabricated nanocomposite sensor material were examined by analyzing clinical and biological samples. Stability testing of the nanocomposite electrode was conducted to assess the reproducibility, determining that the developed biosensor has good stability and high efficiency in producing reproducible results.
Collapse
|
5
|
Patil VB, Malode SJ, Mangasuli SN, Tuwar SM, Mondal K, Shetti NP. An Electrochemical Electrode to Detect Theophylline Based on Copper Oxide Nanoparticles Composited with Graphene Oxide. MICROMACHINES 2022; 13:mi13081166. [PMID: 35893164 PMCID: PMC9394302 DOI: 10.3390/mi13081166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023]
Abstract
The electrochemical analysis of theophylline (THP) was investigated by fabricating a carbon paste electrode (CPE) modified with graphene oxide (GO) along with copper oxide (CuO) nanoparticles (CuO-GO/CPE). The impact of electro-kinetic parameters such as the heterogeneous rate constant, the scan rate, the accumulation time, the pH, the transfer coefficient, and the number of electrons and protons transferred into the electro-oxidation mechanism of THP has been studied utilizing electrochemical methods such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The differential pulse voltammetry technique was employed to investigate THP in pharmaceutical and biological samples, confirming the limit of detection (LOD) and quantification (LOQ) of the THP. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were performed to characterize the CuO nanoparticles. The CuO-GO/CPE was more sensitive in THP detection because its electrocatalytic characteristics displayed an enhanced peak current in the 0.2 M supporting electrolyte of pH 6.0, proving the excellent sensing functioning of the modified electrode.
Collapse
Affiliation(s)
- Vinoda B. Patil
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India; (V.B.P.); (S.N.M.)
| | - Shweta J. Malode
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India;
| | - Sumitra N. Mangasuli
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India; (V.B.P.); (S.N.M.)
| | - Suresh M. Tuwar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India; (V.B.P.); (S.N.M.)
- Correspondence: (S.M.T.); (K.M.); (N.P.S.)
| | - Kunal Mondal
- Idaho National Laboratory, Idaho Falls, ID 83415, USA
- Correspondence: (S.M.T.); (K.M.); (N.P.S.)
| | - Nagaraj P. Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India;
- Correspondence: (S.M.T.); (K.M.); (N.P.S.)
| |
Collapse
|
6
|
Graphene sheet-based electrochemical sensor with cationic surfactant for sensitive detection of atorvastatin. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|