1
|
Hou X, Mao C, Zhang W, Jiang L, Li M, Guo J, Yang C, Wang J, Fang Y, Jiang X, Cai J. Structural and functional roles of domain III in Vip3Aa and Vip3Ca: implications for membrane perforation and insecticidal efficacy. PEST MANAGEMENT SCIENCE 2025. [PMID: 40411233 DOI: 10.1002/ps.8922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/26/2025]
Abstract
BACKGROUND The widespread use of Bacillus thuringiensis Cry proteins in pest control has led to resistance in some lepidopteran pests. Vip3 proteins, lacking sequence homology with Cry toxins, offer a promising alternative due to distinct insecticidal mechanisms. This study investigates how modulating interactions between domain III and the N-terminal region (P14-G22) of Vip3 proteins influences their activation efficiency and insecticidal activity. RESULTS Nine residues in domain III of the Vip3Aa protein were selected for alanine mutation. After testing the membrane perforation activity of the mutants, the results showed that the mutant Vip3Aa-V383A exhibited increased membrane perforation activity compared with the Vip3Aa protein. Structural analysis found that replacing residue V383 with alanine can reduce the hydrogen bonding between domain III and residue Y19. The membrane perforation activity of the disulfide bond mutant Vip3Aa-N21C-T525C was seriously affected. Based on this, the two residues in domain III of the Vip3Ca protein that formed hydrogen bonds with residue Y19 were mutated to alanine respectively. The mutant Vip3Ca-K383A also showed increased membrane perforation activity compared with the Vip3Ca protein. Furthermore, Vip3Aa-V383A and Vip3Ca-K383A showed enhanced insecticidal activity against the four tested lepidopteran pests. In addition, residues K385, K526, and V529 in domain III of the Vip3Aa protein were critical for receptor binding, with mutation diminishing binding affinity and toxicity. CONCLUSIONS Targeted disruption of hydrogen bonds between residues in domain III and residue Y19 enhances the membrane perforation and insecticidal efficacy of Vip3Aa and Vip3Ca, offering a novel engineering strategy for optimizing biopesticides. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang, China
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Chengjuan Mao
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, China
| | - Wen Zhang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, China
| | - Lei Jiang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, China
| | - Mengying Li
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, China
| | - Jixin Guo
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, China
| | - Chenru Yang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, China
| | - Jinxuan Wang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, China
| | - Yaowei Fang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, China
| | - Xu Jiang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, China
| | - Jun Cai
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Pezzini D, Taylor KL, Reisig DD, Fritz ML. Cross-pollination in seed-blended refuge and selection for Vip3A resistance in a lepidopteran pest as detected by genomic monitoring. Proc Natl Acad Sci U S A 2024; 121:e2319838121. [PMID: 38513093 PMCID: PMC10990109 DOI: 10.1073/pnas.2319838121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/13/2023] [Indexed: 03/23/2024] Open
Abstract
The evolution of pest resistance to management tools reduces productivity and results in economic losses in agricultural systems. To slow its emergence and spread, monitoring and prevention practices are implemented in resistance management programs. Recent work suggests that genomic approaches can identify signs of emerging resistance to aid in resistance management. Here, we empirically examined the sensitivity of genomic monitoring for resistance management in transgenic Bt crops, a globally important agricultural innovation. Whole genome resequencing of wild North American Helicoverpa zea collected from non-expressing refuge and plants expressing Cry1Ab confirmed that resistance-associated signatures of selection were detectable after a single generation of exposure. Upon demonstrating its sensitivity, we applied genomic monitoring to wild H. zea that survived Vip3A exposure resulting from cross-pollination of refuge plants in seed-blended plots. Refuge seed interplanted with transgenic seed exposed H. zea to sublethal doses of Vip3A protein in corn ears and was associated with allele frequency divergence across the genome. Some of the greatest allele frequency divergence occurred in genomic regions adjacent to a previously described candidate gene for Vip3A resistance. Our work highlights the power of genomic monitoring to sensitively detect heritable changes associated with field exposure to Bt toxins and suggests that seed-blended refuge will likely hasten the evolution of resistance to Vip3A in lepidopteran pests.
Collapse
Affiliation(s)
- Daniela Pezzini
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC27513
| | - Katherine L. Taylor
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC27513
- Department of Entomology, University of Maryland, College Park, MD20742
| | - Dominic D. Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC27513
| | - Megan L. Fritz
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC27513
- Department of Entomology, University of Maryland, College Park, MD20742
| |
Collapse
|
3
|
Baranek J, Jakubowska M, Gabała E. Insecticidal activity of Bacillus thuringiensis towards Agrotis exclamationis larvae-A widespread and underestimated pest of the Palearctic zone. PLoS One 2023; 18:e0283077. [PMID: 36928078 PMCID: PMC10019718 DOI: 10.1371/journal.pone.0283077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
acillus thuringiensis is an entomopathogenic bacterium commonly used as a bioinsecticide against numerous invertebrate pests. However, the efficacy of this microbe has not yet been determined towards Agrotis exclamationis-a lepidopteran, polyphagous pest, widespread throughout the Palearctic zone. In this work we have detected very low susceptibility of A. exclamationis to B. thuringiensis commercial strains, used as microbial formulations in pest control. To investigate this matter, the biological activity of six selected (Cry1Aa, Cry1Ca, Cry1Ia, Cry2Ab, Cry9Ea and Vip3Aa), heterogously-expressed Bacillus thuringiensis insecticidal proteins has been assessed towards A. exclamationis. Only Cry9Ea and Vip3Aa caused significant mortality in the tested pest species, with LC50 values of 950 and 140 ng/cm2, respectively. The histopathological effects of Cry9Ea and Vip3Aa on A. exclamationis were determined. On the other hand, Cry1- and Cry2-type toxins, which are the main active molecules of the majority of currently-used B. thuringiensis-based biocontrol agents (including the commercial strains tested in this work), did not cause mortality in target insect, but only different levels of growth inhibition. Moreover, in the case of Cry1Ca and Cry1Ia hormesis has been observed-a phenomenon that may be disadvantageous in implementation of these proteins in pest management. The obtained results broaden the existing knowledge regarding B. thuringiensis insecticidal protein target range and depict variable susceptibility of A. exclamationis to different groups of Cry/Vip toxins. This work indicates Cry9Ea and Vip3Aa as good candidates for efficient biological control of A. exclamationis and possibly other Agrotinae and discusses the potential use of Vip3-type and Cry9-type insecticidal proteins as successful bioinsecticides.
Collapse
Affiliation(s)
- Jakub Baranek
- Faculty of Biology, Department of Microbiology, Adam Mickiewicz University in Poznań, Poznań, Poland
- * E-mail:
| | - Magdalena Jakubowska
- Department of Monitoring and Signalling of Agrophages, Institute of Plant Protection-National Research Institute, Poznań, Poland
| | - Elżbieta Gabała
- Institute of Plant Protection-National Research Institute, Poznań, Poland
| |
Collapse
|
4
|
Zhang Y, Li X, Tian H, An B, Yan B, Cai J. Vegetative Insecticidal Protein Vip3Aa Is Transported via Membrane Vesicles in Bacillus thuringiensis BMB171. Toxins (Basel) 2022; 14:toxins14070480. [PMID: 35878218 PMCID: PMC9319297 DOI: 10.3390/toxins14070480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Vegetative insecticidal protein Vip3Aa, secreted by many Bacillus thuringiensis (Bt) strains during the vegetative growth stage, represents the second-generation insecticidal toxin. In recent years, significant progress has been made on its structure and action mechanism. However, how it is translocated across the cytoplasmic membrane into the environment remains a mystery. This work demonstrates that Vip3Aa is not secreted by the General Secretion (Sec) System. To reveal the secretory pathway of Vip3A, we purified the membrane vesicles (MVs) of B. thuringiensis BMB171 and observed by TEM. The size of MVs was determined by the dynamic light scattering method, and their diameter was approximately 40–200 nm, which is consistent with the vesicles in Gram-negative bacteria. Moreover, Vip3A could be detected in the purified MVs by Western blot, and immunoelectron microscopy reveals Vip3A antibody-coated gold particles located in the MVs. After deleting its signal peptide, chitinase B (ChiB) failed to be secreted. However, the recombinant ChiB, whose signal peptide was substituted with the N-terminal 39 amino acids from Vip3A, was secreted successfully through MVs. Thus, this sequence is proposed as the signal region responsible for vesicle transport. Together, our results revealed for the first time that Vip3Aa is transported to the medium via MVs.
Collapse
Affiliation(s)
- Yizhuo Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Y.Z.); (X.L.); (H.T.); (B.A.); (B.Y.)
| | - Xuelian Li
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Y.Z.); (X.L.); (H.T.); (B.A.); (B.Y.)
| | - Hongwei Tian
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Y.Z.); (X.L.); (H.T.); (B.A.); (B.Y.)
| | - Baoju An
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Y.Z.); (X.L.); (H.T.); (B.A.); (B.Y.)
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Y.Z.); (X.L.); (H.T.); (B.A.); (B.Y.)
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Y.Z.); (X.L.); (H.T.); (B.A.); (B.Y.)
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
5
|
An B, Zhang Y, Li X, Hou X, Yan B, Cai J. PHB2 affects the virulence of Vip3Aa to Sf9 cells through internalization and mitochondrial stability. Virulence 2022; 13:684-697. [PMID: 35400294 PMCID: PMC9037526 DOI: 10.1080/21505594.2022.2064596] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The vegetative insecticidal proteins (Vip3A) secreted by some Bacillus thuringiensis (Bt) strains during vegetative growth are regarded as a new generation of insecticidal toxins. Like insecticidal crystal proteins, they are also used in transgenic crops to control pests. However, their insecticidal mechanisms are far less defined than those of insecticidal crystal protein. Prohibitin 2 (PHB2) is a potential Vip3Aa binding receptor identified from the membrane of Sf9 cells in our previous work. In this paper, we demonstrated the interaction between Vip3Aa and PHB2 using pull-down, dot blotting, microscale thermophoresis, and co-immunoprecipitation assays. PHB2 is distributed on the cell membrane and in the cytoplasm, and the co-localization of PHB2 and Vip3Aa was observed in Sf9 cells using a confocal laser scanning microscope. Moreover, PHB2 could interact with scavenger receptor-C via its SPFH (stomatin, prohibitin, flotillin, and HflK/C) domain. Downregulation of phb2 expression reduced the degree of internalization of Vip3Aa, exacerbated Vip3Aa-mediated mitochondrial damage, and increased Vip3Aa toxicity to Sf9 cells. This suggested that PHB2 performs two different functions: Acting as an interacting partner to facilitate the internalization of Vip3Aa into Sf9 cells and maintaining the stability of mitochondria. The latter has a more important influence on the virulence of Vip3Aa.
Collapse
Affiliation(s)
- Baoju An
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yizhuo Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xuelian Li
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyue Hou
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- Jiangsu Institute of Marine Bioresources development, Lianyungang, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
6
|
Lázaro-Berenguer M, Quan Y, Hernández-Martínez P, Ferré J. In vivo competition assays between Vip3 proteins confirm the occurrence of shared binding sites in Spodoptera littoralis. Sci Rep 2022; 12:4578. [PMID: 35301405 PMCID: PMC8931066 DOI: 10.1038/s41598-022-08633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/07/2022] [Indexed: 11/09/2022] Open
Abstract
Due to their different specificity, the use of Vip3 proteins from Bacillus thuringiensis in combination with the conventionally used Cry proteins in crop protection is being essential to counteract the appearance of insect resistance. Therefore, understanding the mode of action of Vip3 proteins is crucial for their better application, with special interest on the binding to membrane receptors as the main step for specificity. Derived from in vitro heterologous competition binding assays using 125I-Vip3A and other Vip3 proteins as competitors, it has been shown that Vip3 proteins share receptors in Spodoptera frugiperda and Spodoptera exigua brush border membrane vesicles (BBMV). In this study, using 125I-Vip3Aa, we have first extended the in vitro competition binding site model of Vip3 proteins to Spodoptera littoralis. With the aim to understand the relevance (in terms of toxicity) of the binding to the midgut sites observed in vitro on the insecticidal activity of these proteins, we have performed in vivo competition assays with S. littoralis larvae, using disabled mutant (non-toxic) Vip3 proteins as competitors for blocking the toxicity of Vip3Aa and Vip3Af. The results of the in vivo competition assays confirm the occurrence of shared binding sites among Vip3 proteins and help understand the functional role of the shared binding sites as revealed in vitro.
Collapse
Affiliation(s)
- María Lázaro-Berenguer
- Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain
| | - Yudong Quan
- Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain
| | - Patricia Hernández-Martínez
- Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain
| | - Juan Ferré
- Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
7
|
Critical domains in the specific binding of radiolabelled Vip3Af insecticidal protein to brush border membrane vesicles from Spodoptera spp. and cultured insect cells. Appl Environ Microbiol 2021; 87:e0178721. [PMID: 34586902 DOI: 10.1128/aem.01787-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vegetative insecticidal proteins (Vip3) from Bacillus thuringiensis have been used, in combination with Cry proteins, to better control insect pests and as a strategy to delay the evolution of resistance to Cry proteins in Bt crops (crops protected from insect attack by the expression of proteins from B. thuringiensis). In this study, we have set up the conditions to analyze the specific binding of 125I-Vip3Af to Spodoptera frugiperda and Spodoptera exigua brush border membrane vesicles (BBMV). Heterologous competition binding experiments revealed that Vip3Aa shares the same binding sites with Vip3Af, but that Vip3Ca does not recognize all of them. As expected, Cry1Ac and Cry1F did not compete for Vip3Af binding sites. By trypsin treatment of selected alanine-mutants, we were able to generate truncated versions of Vip3Af. Their use as competitors with 125I-Vip3Af indicated that only those molecules containing domains I to III (DI-III and DI-IV) were able to compete with the trypsin-activated Vip3Af protein for binding, and that molecules only containing either domain IV or domains IV and V (DIV and DIV-V) were unable to compete with Vip3Af. These results were further confirmed with competition binding experiments using 125I-DI-III. In addition, the truncated protein 125I-DI-III also bound specifically to Sf21 cells. Cell viability assays showed that the truncated proteins DI-III and DI-IV were as toxic to Sf21 cells as the activated Vip3Af, suggesting that domains IV and V are not necessary for the toxicity to Sf21 cells, in contrast to their requirement in vivo. IMPORTANCE This study shows that Vip3Af binding sites are fully shared with Vip3Aa, only partially shared with Vip3Ca, and not shared with Cry1Ac and Cry1F in two Spodoptera spp. Truncated versions of Vip3Af revealed that only domains I to III were necessary for the specific binding, most likely because they can form the functional tetrameric oligomer and because domain III is supposed to contain the binding epitopes. In contrast to results obtained in vivo (bioassays against larvae), domains IV and V are not necessary for the ex vivo toxicity to Sf21 cells.
Collapse
|
8
|
Gupta M, Kumar H, Kaur S. Vegetative Insecticidal Protein (Vip): A Potential Contender From Bacillus thuringiensis for Efficient Management of Various Detrimental Agricultural Pests. Front Microbiol 2021; 12:659736. [PMID: 34054756 PMCID: PMC8158940 DOI: 10.3389/fmicb.2021.659736] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
Bacillus thuringiensis (Bt) bacterium is found in various ecological habitats, and has natural entomo-pesticidal properties, due to the production of crystalline and soluble proteins during different growth phases. In addition to Cry and Cyt proteins, this bacterium also produces Vegetative insecticidal protein (Vip) during its vegetative growth phase, which is considered an excellent toxic candidate because of the difference in sequence homology and receptor sites from Cry proteins. Vip proteins are referred as second-generation insecticidal proteins, which can be used either alone or in complementarity with Cry proteins for the management of various detrimental pests. Among these Vip proteins, Vip1 and Vip2 act as binary toxins and have toxicity toward pests belonging to Hemiptera and Coleoptera orders, whereas the most important Vip3 proteins have insecticidal activity against Lepidopteran pests. These Vip3 proteins are similar to Cry proteins in terms of toxicity potential against susceptible insects. They are reported to be toxic toward pests, which can’t be controlled with Cry proteins. The Vip3 proteins have been successfully pyramided along with Cry proteins in transgenic rice, corn, and cotton to combat resistant pest populations. This review provides detailed information about the history and importance of Vip proteins, their types, structure, newly identified specific receptors, and action mechanism of this specific class of proteins. Various studies conducted on Vip proteins all over the world and the current status have been discussed. This review will give insights into the significance of Vip proteins as alternative promising candidate toxic proteins from Bt for the management of pests in most sustainable manner.
Collapse
Affiliation(s)
- Mamta Gupta
- ICAR-National Institute for Plant Biotechnology, New Delhi, India.,ICAR-Indian Institute of Maize Research, Ludhiana, India
| | - Harish Kumar
- Punjab Agricultural University, Regional Research Station, Faridkot, India
| | - Sarvjeet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
9
|
Current Insights on Vegetative Insecticidal Proteins (Vip) as Next Generation Pest Killers. Toxins (Basel) 2020; 12:toxins12080522. [PMID: 32823872 PMCID: PMC7472478 DOI: 10.3390/toxins12080522] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 02/01/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram negative soil bacterium. This bacterium secretes various proteins during different growth phases with an insecticidal potential against many economically important crop pests. One of the important families of Bt proteins is vegetative insecticidal proteins (Vip), which are secreted into the growth medium during vegetative growth. There are three subfamilies of Vip proteins. Vip1 and Vip2 heterodimer toxins have an insecticidal activity against many Coleopteran and Hemipteran pests. Vip3, the most extensively studied family of Vip toxins, is effective against Lepidopteron. Vip proteins do not share homology in sequence and binding sites with Cry proteins, but share similarities at some points in their mechanism of action. Vip3 proteins are expressed as pyramids alongside Cry proteins in crops like maize and cotton, so as to control resistant pests and delay the evolution of resistance. Biotechnological- and in silico-based analyses are promising for the generation of mutant Vip proteins with an enhanced insecticidal activity and broader spectrum of target insects.
Collapse
|
10
|
Chakrabarty S, Jin M, Wu C, Chakraborty P, Xiao Y. Bacillus thuringiensis vegetative insecticidal protein family Vip3A and mode of action against pest Lepidoptera. PEST MANAGEMENT SCIENCE 2020; 76:1612-1617. [PMID: 32103608 DOI: 10.1002/ps.5804] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Vip3A proteins are widely used for controlling pest Lepidoptera. Different binding sites with different receptors in the insect midgut membrane and lack of cross-resistance with crystal (Cry) proteins enhance their applicability, as both single proteins and proteins pyramided with Cry proteins in transgenic Bt crops. Vip3A proteins are effective but there is relatively little information about their structure, function, activation, specificity, and mode of action. In addition, the mechanism of insect resistance to these proteins is unknown. Phylogenetic analysis and multiple sequence alignment showed that Vip3A proteins are genetically distant from Cry proteins. The mode of action and insecticidal activity of Vip3A proteins are discussed in this review. This review also provides detailed information about the Vip3A protein family that may aid in the design of more efficient pest management strategies in response to insect resistance to insecticidal proteins. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Swapan Chakrabarty
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Minghui Jin
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chao Wu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Panchali Chakraborty
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yutao Xiao
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
11
|
El-Gaied L, Mahmoud A, Salem R, Elmenofy W, Saleh I, Abulreesh HH, Arif IA, Osman G. Characterization, cloning, expression and bioassay of vip3 gene isolated from an Egyptian Bacillus thuringiensis against whiteflies. Saudi J Biol Sci 2020; 27:1363-1367. [PMID: 32346346 PMCID: PMC7182773 DOI: 10.1016/j.sjbs.2019.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/24/2019] [Accepted: 12/08/2019] [Indexed: 12/28/2022] Open
Abstract
Throughout the vegetative life of Bacillus thuringiensis, vegetative insecticidal proteins (Vip) are produced and secreted. In the present study, the vip3 gene isolated from Bacillus thuringiensis, an Egyptian isolate, was successfully amplified (2.4 kbp) and expressed using bacterial expression system. The molecular mass of the expressed protein was verified using SDS-PAGE and western blot analysis. Whiteflies were also screened for susceptibility to the expressed Vip3 protein (LC50). In addition, ST50 was determined to assess the kill speed of the expressed Vip3 protein against whiteflies compared to the whole vegetative proteins. The results showed that the potency of whole B. thuringiensis vegetative proteins against whiteflies was slightly higher than the expressed Vip3 protein with 4.7-fold based on LC50 value. However, the ST50 parameter showed no significant difference between both the B. thuringiensis vegetative proteins and the expressed Vip3 alone. The results showed that the vip3 gene was successfully expressed in an active form which showed high susceptibility to whiteflies based on the virulence parameters LC50 and ST50. To our knowledge, this study showed for the first time the high toxicity of the expressed Vip3 proteins of B. thuringiensis toward whiteflies as a hopeful and promising bio-control agent.
Collapse
Affiliation(s)
- Lamiaa El-Gaied
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt
| | - Alshimaa Mahmoud
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt
| | - Reda Salem
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt
| | - Wael Elmenofy
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt
| | - Ibrahim Saleh
- Prince Sultan Research Chair for Environment and Wildlife, Department of Botany & Microbiology, College of Sciences, King Saud University (KSU), Riyadh, Saudi Arabia
| | - Hussein H. Abulreesh
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Center, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim A. Arif
- Prince Sultan Research Chair for Environment and Wildlife, Department of Botany & Microbiology, College of Sciences, King Saud University (KSU), Riyadh, Saudi Arabia
| | - Gamal Osman
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Center, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
12
|
Intracellular localization and cytotoxicity of Bacillus thuringiensis Vip3Aa against Spodoptera frugiperda (Sf9) cells. J Invertebr Pathol 2020; 171:107340. [DOI: 10.1016/j.jip.2020.107340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 11/19/2022]
|