1
|
Yu Y, Liu T, Wang Y, Liu L, He X, Li J, Martin FM, Peng W, Tan H. Comparative analyses of Pleurotus pulmonarius mitochondrial genomes reveal two major lineages of mini oyster mushroom cultivars. Comput Struct Biotechnol J 2024; 23:905-917. [PMID: 38370975 PMCID: PMC10869244 DOI: 10.1016/j.csbj.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Pleurotus pulmonarius, commonly known as the mini oyster mushroom, is highly esteemed for its crisp texture and umami flavor. Limited genetic diversity among P. pulmonarius cultivars raises concerns regarding its sustainable industrial production. To delve into the maternal genetic diversity of the principal P. pulmonarius cultivars, 36 cultivars and five wild isolates were subjected to de novo sequencing and assembly to generate high-quality mitogenome sequences. The P. pulmonarius mitogenomes had lengths ranging from 69,096 to 72,905 base pairs. The mitogenome sizes of P. pulmonarius and those of other mushroom species in the Pleurotus genus showed a significant positive correlation with the counts of LAGLIDAG and GIY-YIG homing endonucleases encoded by intronic open reading frames. A comparison of gene arrangements revealed an inversion of a fragment containing atp9-nad3-nad2 between P. pulmonarius and P. ostreatus. The mitogenomes of P. pulmonarius were clustered into three distinct clades, two of which were crowded with commercial cultivars. Clade I, all of which possess an inserted dpo gene, shared a maternal origin linked to an ancestral cultivar from Taiwan. Primers were designed to target the dpo gene, potentially safeguarding intellectual property rights. The wild isolates in Clade III exhibited more divergent mitogenomes, rendering them valuable for breeding.
Collapse
Affiliation(s)
- Yang Yu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Tianhai Liu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
- Sichuan Agricultural University, Chengdu 610000, China
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Lixu Liu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Xiaolan He
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Jianwei Li
- Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Francis M. Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est, Nancy, Champenoux 54280, France
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Hao Tan
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
2
|
Sharika R, Mongkolpobsin K, Rangsinth P, Prasanth MI, Nilkhet S, Pradniwat P, Tencomnao T, Chuchawankul S. Experimental Models in Unraveling the Biological Mechanisms of Mushroom-Derived Bioactives against Aging- and Lifestyle-Related Diseases: A Review. Nutrients 2024; 16:2682. [PMID: 39203820 PMCID: PMC11357205 DOI: 10.3390/nu16162682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Mushrooms have garnered considerable interest among researchers due to their immense nutritional and therapeutic properties. The presence of biologically active primary and secondary metabolites, which includes several micronutrients, including vitamins, essential minerals, and other dietary fibers, makes them an excellent functional food. Moreover, the dietary inclusion of mushrooms has been reported to reduce the incidence of aging- and lifestyle-related diseases, such as cancer, obesity, and stroke, as well as to provide overall health benefits by promoting immunomodulation, antioxidant activity, and enhancement of gut microbial flora. The multifunctional activities of several mushroom extracts have been evaluated by both in vitro and in vivo studies using cell lines along with invertebrate and vertebrate model systems to address human diseases and disorders at functional and molecular levels. Although each model has its own strengths as well as lacunas, various studies have generated a plethora of data regarding the regulating players that are modulated in order to provide various protective activities; hence, this review intends to compile and provide an overview of the plausible mechanism of action of mushroom-derived bioactives, which will be helpful in future medicinal explorations.
Collapse
Affiliation(s)
- Rajasekharan Sharika
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuljira Mongkolpobsin
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paweena Pradniwat
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Téllez-Téllez M, Diaz-Godinez G. Mushrooms and Fungi and Their Biological Compounds with Antidiabetic Activity: A Review. Int J Med Mushrooms 2024; 26:13-24. [PMID: 38780420 DOI: 10.1615/intjmedmushrooms.2024052864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Mushrooms have been used by humans for centuries as food and medicine because they have been shown to affect certain diseases. Mushrooms for medicinal purposes have been consumed in the form of extracts and/or biomass of the mycelium or fruiting body. The beneficial health effects of mushrooms are due to their content of bioactive compounds (polysaccharides, proteins, ergosterol, lectins, etc.). On the other hand, diabetes is one of the metabolic diseases that affects the population worldwide, characterized by hyperglycemia that involves a defective metabolism of insulin, a hormone secreted by β cells and that mainly stimulates glucose absorption by the cells. However, it also affects the metabolism of carbohydrates, fats and proteins; poor control of this disease leads to serious damage to eyesight, kidneys, bones, heart, skin, blood vessels, nerves, etc. It has been reported that the consumption of some mushrooms helps control and treat diabetes, since among other actions, they promote the secretion of insulin by the pancreas, help reduce blood glucose and have α-glucosidase inhibitory activity which improves glucose uptake by cells, which are effects that prescription medications have for patients with diabetes. In that sense, this manuscript shows a review of scientific studies that support the abilities of some mushrooms to be used in the control and/or treatment of diabetes.
Collapse
Affiliation(s)
- Maura Téllez-Téllez
- Laboratory of Mycology, Biological Research Center, Autonomous University of Morelos State, Morelos, Mexico
| | | |
Collapse
|
4
|
Karempudi VK, Gokul TA, Ramesh Kumar K, Veeramanikandan V, Ali D, Impellitteri F, Faggio C, Ullah H, Daglia M, Balaji P. Protective role of Pleurotus florida against streptozotocin-induced hyperglycemia in rats: A preclinical study. Biomed Pharmacother 2024; 170:116005. [PMID: 38086150 DOI: 10.1016/j.biopha.2023.116005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Pleurotus florida (Mont.) Singer is a mushroom species known to be an antioxidant, immunomodulatory, and diuretic agent, reducing blood pressure and cholesterol. The aim of this study was to evaluate the in vivo potency of P. florida's anti-diabetic properties in rats affected by hyperglycemia induced by Streptozotocin (STZ) at 55 mg/kg (i.p.), characterized by oxidative stress impairment, and changes in insulin levels and lipid profile. After inducing hyperglycemia in the rats, they were treated with P. florida acetone and methanol extracts, orally administered for 28 days at doses of 200 mg/kg and 400 mg/kg body weight. The hyperglycemic control (DC) group showed significant increases (P < 0.05) in mean blood sugar, total cholesterol, triglycerides, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, blood urea nitrogen, lipid hydroperoxides, and malondialdehyde, compared to the normal control (NC) group The high-density lipoprotein cholesterol, serum insulin, superoxide dismutase, catalase, glutathione disulfide, glutathione peroxidase, reduced glutathione, guaiacol peroxidase, and vitamin E and C levels showed a significant decrease (P < 0.05) in DC group, compared to the NC group. Blood glucose levels, lipid profiles, and insulin levels improved significantly after 28 days of treatment, in the group treated with glibenclamide (an oral hypoglycemic drug, used as positive control), and in the groups treated with P. florida extracts. In DC group, the treatment with P. florida was found to prevent diabetes, according to histopathological studies of the kidneys, pancreas, and liver of rats. In conclusion, this study has shown that the treatment with P. florida decreased oxidative stress and glucose levels in the blood, as well as restoring changes in lipid profiles.
Collapse
Affiliation(s)
| | - Tamilselvan Amutha Gokul
- PG and Research Centre in Zoology, Vivekananda College (Affiliated to Madurai Kamaraj University), Tiruvedakam (West), Madurai, TN, India
| | - Kamatchi Ramesh Kumar
- PG and Research Centre in Zoology, Vivekananda College (Affiliated to Madurai Kamaraj University), Tiruvedakam (West), Madurai, TN, India
| | | | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Paulraj Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur, TN, India.
| |
Collapse
|
5
|
Zhang D, Tang Q, He X, Wang Y, Zhu G, Yu L. Antimicrobial, antioxidant, anti-inflammatory, and cytotoxic activities of Cordyceps militaris spent substrate. PLoS One 2023; 18:e0291363. [PMID: 37682981 PMCID: PMC10490986 DOI: 10.1371/journal.pone.0291363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Cordyceps militaris is a medicinal mushroom and has been extensively used as a traditional medicine in East Asia. After the chrysalis seeds are matured and harvested, the spent substrate of C. militaris still contains active ingredients but is usually discarded as waste. This study aimed to determine the antioxidant and anti-inflammatory activities of C. militaris spent substrate extract and its inhibitory activity on the Malassezia commensal yeasts that can cause dandruff and seborrheic dermatitis. Active substances in the spent substrate of C. militaris were extracted using a hot water extraction method and were used for the determination of antioxidant activity by measuring their ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radicals, hydrogen peroxide, and superoxide anions. The ability to inhibit Malassezia was analyzed using the broth microdilution method, and the reparative effect on oxidative damage in HaCaT cells was measured using in vitro cell analysis. Respiratory burst evaluation was used to determine the anti-inflammatory capacity of extracts. Analysis of the Malassezia-inhibiting activity of the extracts showed that the minimum inhibitory concentration was 6.25 mg/mL. The half maximal inhibitory concentration (IC50) values of DPPH, O2-, H2O2 and OH- were 3.845 mg/mL, 2.673 mg/mL, 0.037 mg/mL and 0.046 mg/mL, respectively. In the concentration range of 2 to 50%, the extract was non-toxic to cells and was able to protect HaCaT cells from H2O2 damage. When the volume fraction of the extract was 20.96%, its anti-inflammatory ability reached 50%. These results demonstrated that the extract may be a safe and efficacious source for pharmaceutical or cosmetic applications, with Malassezia-inhibiting, antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Danyu Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Qingjiu Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xianzhe He
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Yipeng Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Guangyong Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Ling Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
6
|
Bioactive compounds from mushrooms: Emerging bioresources of food and nutraceuticals. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Ramasubramanian A, Venkatachalam K, Chellaiah I, Chinnathambi P, Palanichamy A, Nguyen V, Paulraj B. Phytochemical Profiling, Antioxidants, Antimicrobial and Anti‐Proliferative Effect of
Senna hirsuta
against PC‐3 Human Prostate Cancer Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202201516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arumugam Ramasubramanian
- PG and Research Department of Botany Alagappa Government Arts College, Karaikudi Tamilnadu India
| | - Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project Prince of Songkla University Surat Thani Campus, Makham Tia Mueang, Surat Thani 84000 Thailand
| | - Ijin Chellaiah
- PG and Research Department of Botany Alagappa Government Arts College, Karaikudi Tamilnadu India
| | | | - Ayyappan Palanichamy
- PG and Research Department of Botany Government Arts College, Melur Tamilnadu India
| | - Van‐Huy Nguyen
- Chettinad Hospital and Research Institute Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram district- 603103 Tamil Nadu India
| | - Balaji Paulraj
- PG and Research Centre in Biotechnology MGR College Hosur India
| |
Collapse
|
8
|
Yan LJ. The Nicotinamide/Streptozotocin Rodent Model of Type 2 Diabetes: Renal Pathophysiology and Redox Imbalance Features. Biomolecules 2022; 12:biom12091225. [PMID: 36139064 PMCID: PMC9496087 DOI: 10.3390/biom12091225] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes mellitus. While there has been a great advance in our understanding of the pathogenesis of DN, no effective managements of this chronic kidney disease are currently available. Therefore, continuing to elucidate the underlying biochemical and molecular mechanisms of DN remains a constant need. In this regard, animal models of diabetes are indispensable tools. This review article highlights a widely used rodent model of non-obese type 2 diabetes induced by nicotinamide (NA) and streptozotocin (STZ). The mechanism underlying diabetes induction by combining the two chemicals involves blunting the toxic effect of STZ by NA so that only a percentage of β cells are destroyed and the remaining viable β cells can still respond to glucose stimulation. This NA-STZ animal model, as a platform for the testing of numerous antidiabetic and renoprotective materials, is also discussed. In comparison with other type 2 diabetic animal models, such as high-fat-diet/STZ models and genetically engineered rodent models, the NA-STZ model is non-obese and is less time-consuming and less expensive to create. Given that this unique model mimics certain pathological features of human DN, this model should continue to find its applications in the field of diabetes research.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
9
|
Sisay W, Andargie Y, Molla M, Tessema G, Singh P. Glinus lotoides linn. Seed extract as antidiabetic agent: In vitro and in vivo anti-glucolipotoxicity efficacy in Type-II diabetes mellitus. Metabol Open 2022; 14:100189. [PMID: 35637658 PMCID: PMC9142648 DOI: 10.1016/j.metop.2022.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/01/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022] Open
Abstract
Background Diabetes, especially type-II, prevailed despite recent medical advances. An edible G. lotoides (GL) seed is sold in Ethiopian traditional market such as 'Merkato' and used in folkloric medicine to treat diabetes. But to date not scientifically proven in this optic. As a result, this study set out to validate this claim. Methods Following G. lotoides seed has been extracted, its antidiabetic efficacy was initially validated in vitro before in vivo investigation. The in vitro activity was probed by employing carbohydrate and lipid metabolizing enzymes inhibition assay. Based on this fact, the in vivo antidiabetic efficacy was conducted in normoglycemic, oral glucose-loaded and streptozotocin (150 mg/kg)-nicotinamide (65 mg/kg)-elicited type II diabetic rats. Results The extract's LD50 was found to be greater than 2 g/kg. In vitro tests pill up evidence that seed extract foils carbohydrate and lipid metabolizing enzyme activities (p < 0.001). On the other hand, seed extract significantly abridged blood glucose in normoglycaemic rats markedly (p < 0.05-0.001). The highest dose exhibited the strongest glucose tolerance effect, with a maximum slaying (41.1%) in glucose-loaded rats' plasma glucose (p < 0.001). All doses of the extract ameliorate blood glucose levels significantly in diabetic rats after 4 weeks of therapy (p < 0.05-0.001). Likewise, all test doses tempered harmful lipides in diabetic rats markedly (p < 0.05-0.001). But HDL (p < 0.01-0.001) and body weight losses (p < 0.05-0.001) were rectified. Conclusion In consequence, our data unveils the safety and glucolipotoxicity inhibition potential of G. lotoides seed extract, authenticating the traditional standpoint that it might be converted into a viable anti-diabetic lead upon subsequent investigations.
Collapse
Affiliation(s)
- Woretaw Sisay
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yared Andargie
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mulugeta Molla
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Getaye Tessema
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Pradeep Singh
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
10
|
Caldas LA, Zied DC, Sartorelli P. Dereplication of extracts from nutraceutical mushrooms Pleurotus using molecular network approach. Food Chem 2022; 370:131019. [PMID: 34509152 DOI: 10.1016/j.foodchem.2021.131019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 11/04/2022]
Abstract
Pleurotus is an edible mushroom from the well-known genus of Basidiomycetes; it is the second-most commonly consumed mushroom worldwide. This genus is characterized by the presence of steroids, fatty acids, and polysaccharides. Recently, Pleurotus has become popular as a functional food owing to its health benefits, primarily because they are a source of vitamins, fibers, minerals, and lipids. In natural products chemistry, dereplication techniques identify bioactive molecules from natural sources such as plants and fungi without isolating or characterizing molecules. We used dereplication techniques aided by the Global Natural Products Social Molecular Network to analyze the chemical composition of the methanolic extracts of six Pleurotus species (P. sapidus, P. ostreaus, P. ostreaus var. Florida, P. djamor, P. citrinopileatus, and P. pulmonarius), to identify bioactive molecules with nutraceutical properties. Using this technique, we identified several molecular families, including eight fatty acids and seven steroids. Our findings suggest that dereplication is a relatively rapid tool for characterizing fungal species and determining their nutraceutical value.
Collapse
Affiliation(s)
- Lhaís Araújo Caldas
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Diego Cunha Zied
- Faculdade de Ciências Agrarias e Tecnológicas, Universidade Estadual Paulista Júlio de Mesquita Filho, Dracena, SP, Brazil
| | - Patrícia Sartorelli
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
11
|
Microbial synthesis of silver nanoparticles using Lactobacillus plantarum for antioxidant, antibacterial activities. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Maya MR, Ananthi V, Arun A, Kumar P, Govarthanan M, Rameshkumar K, Veeramanikandan V, Balaji P. Protective efficacy of Capsicum frutescens fruits in pancreatic, hepatic and renal cell injury and their attenuation of oxidative stress in diabetic Wistar rats. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2021.2024998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- M. R. Maya
- PG and Research Centre in Biotechnology, MGR College, Hosur, India
| | - V. Ananthi
- Department of Microbiology, Alagappa University, Karaikudi, India
- Department of Microbiology, PRIST University, Madurai Campus, India
| | - A. Arun
- Department of Microbiology, Alagappa University, Karaikudi, India
| | - P. Kumar
- Department of Animal Health and Management, Alagappa University, Karaikudi, India
| | - M. Govarthanan
- Department of Environmental Engineering, Kyungpook National University, South Korea
| | - K. Rameshkumar
- Department of Zoology, Vivekananda College, Madurai, India
| | | | - P. Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur, India
| |
Collapse
|
13
|
Dinda B, Dinda M. Natural Products, a Potential Source of New Drugs Discovery to Combat Obesity and Diabetes: Their Efficacy and Multi-targets Actions in Treatment of These Diseases. NATURAL PRODUCTS IN OBESITY AND DIABETES 2022:101-275. [DOI: 10.1007/978-3-030-92196-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Evaluation of antioxidant, anti-inflammatory, and anti-hyperglycemic effects of Wattakaka volubilis Linn. f. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Amer AS, Mohamed RS, Bastwrous AE, Adly ME. Maternal alloxan exposure induces damage in rat offspring lumbar vertebrae and protective role of arachidonic acid. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:83-97. [PMID: 36074671 PMCID: PMC9593121 DOI: 10.47162/rjme.63.1.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Vertebral abnormalities in offspring of diabetic mothers make major challenges worldwide and were not sufficiently studied before. AIM To investigate the effects of alloxan-induced diabetes on rats' lumbar vertebrae, and to assess the potential beneficial impact of arachidonic acid. MATERIALS AND METHODS Pregnant rats were randomly equally divided into four groups: control, alloxan-induced diabetes received alloxan injection 150 mg∕kg, alloxan + arachidonic acid group received arachidonic acid 10 μg∕animal then given alloxan injection, and arachidonic acid group received it, until offspring age of three weeks. Six male offspring from each group were included in this study at ages of newborn, three-week-old, two-month-old, and their body measurements were recorded. Lumbar vertebrae and pancreas specimens were examined by light microscopy, morphometry, transmission electron microscopy (TEM), and immunohistochemistry for insulin expression. RESULTS In alloxan-induced diabetes newborn, three-week-old, and two-month-old rats, body measurements were significantly declined, histomorphometry of 6th lumbar vertebrae revealed disorganized chondrocytes, with vacuolated cytoplasm, empty lacunae, diminished matrix staining, with areas devoid of cells. TEM showed shrunken reserve and proliferative cells, with irregular nuclei, and damaged mitochondria. In contrast, alloxan + arachidonic acid group had cytoarchitecture of lumbar vertebrae that were like control group. Histomorphometry of pancreas in alloxan-induced diabetes group showed significant reduction in pancreatic islets number and surface area, damaged pancreatic islet cells appeared atrophied with apoptotic nuclei, and very weak insulin immunostaining. Whereas alloxan + arachidonic acid group displayed healthy features of pancreatic islets, which resembled control group, with strong insulin immunostaining. CONCLUSIONS Arachidonic acid mitigated alloxan-induced diabetes by its antidiabetic activity.
Collapse
Affiliation(s)
- Ayman Salaheldeen Amer
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt;
| | | | | | | |
Collapse
|
16
|
Illuri R, M E, M K, R SB, P P, Nguyen VH, Bukhari NA, Hatamleh AA, P B. Bio-prospective potential of Pleurotus djamor and Pleurotus florida mycelial extracts towards Gram positive and Gram negative microbial pathogens causing infectious disease. J Infect Public Health 2021; 15:297-306. [PMID: 34690095 DOI: 10.1016/j.jiph.2021.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND The emergence of resistance to commonly used antibiotics by human infections occurred mostly due to their overuse, that prompted individuals to pursue novel and innovative treatments. The phytochemical characteristics, antibacterial activity, and cytotoxicity of MCF7 cells were evaluated in two Pleurotus spp. mycelial extracts in this work. METHODS Pleurotus djamor and Pleurotus florida mycelial extracts from pure cultures were tested for antibacterial activity by a well-diffusion assay and antimicrobial activity against mold fungi was evaluated for biomass inhibition. Mycelial extracts were obtained from dichloromethane extracts and their biophysical characteristics are analyzed by UV-vis spectrum and FTIR analysis. By spraying detection reagents onto TLC plates, the chemicals in dichloromethane extraction of chosen mushroom fungus mycelia were identified. Using the MTT test, the cytotoxic effect of dichloromethane extracts of selected mushroom fungi was evaluated on MCF7 Cell lines. RESULTS Mycelial extracts of P. djamor and P. florida exhibited significant antimicrobial effect on the bacterial and fungal pathogens tested. Dichloromethane mycelial extracts were obtained using soxhlet extraction which response positive for various phytochemical analysis. Detection of metabolites in thin layer chromatography using spray reagents documented one of few first accounts on flavonoids, anthroquinone and terpenoid compounds in P. djamor and P. florida. P. djamor and P. florida had dose-dependent antiproliferative activity against MCF7 cells, with an inhibitory impact of 55.72% and 64.47% percent at 125 μg/mL, respectively. CONCLUSION The study has reported the identification with the potent biological activity of some of the key bioactive components present in DCM extracts from the mycelia of P. djamor and P. florida.
Collapse
Affiliation(s)
- Ramanaiah Illuri
- PG and Research Centre in Biotechnology, MGR College, Hosur, Tamilnadu, India
| | - Eyini M
- PG and Centre for Research in Botany, Thiagarajar College, Madurai, Tamilnadu, India
| | - Kumar M
- Department of Plant Biology and Plant Biotechnology, Madras Christian College (Autonomous), Tambaram, Chennai, Tamilnadu, India
| | - Suresh Babu R
- Department of Neurological Sciences, Rush University Medical Center, Rush University, Chicago, IL 60612, USA
| | - Prema P
- Department of Zoology, VHNSN College (Autonomous), Virudhunagar, Tamilnadu, India
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| | - Najat A Bukhari
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ashraf A Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Balaji P
- PG and Research Centre in Biotechnology, MGR College, Hosur, Tamilnadu, India.
| |
Collapse
|
17
|
Yadav D, Negi PS. Bioactive components of mushrooms: Processing effects and health benefits. Food Res Int 2021; 148:110599. [PMID: 34507744 DOI: 10.1016/j.foodres.2021.110599] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Mushrooms have been recognized for their culinary attributes for long and were relished in the most influential civilizations in history. Currently, they are the focus of renewed research because of their therapeutic abilities. Nutritional benefits from mushrooms are in the form of a significant source of essential proteins, dietary non-digestible carbohydrates, unsaturated fats, minerals, as well as various vitamins, which have enhanced its consumption, and also resulted in the development of various processed mushroom products. Mushrooms are also a crucial ingredient in traditional medicine for their healing potential and curative properties. The literature on the nutritional, nutraceutical, and therapeutic potential of mushrooms, and their use as functional foods for the maintenance of health was reviewed, and the available literature indicates the enormous potential of the bioactive compounds present in mushrooms. Future research should be focused on the development of processes to retain the mushroom bioactive components, and valorization of waste generated during processing. Further, the mechanisms of action of mushroom bioactive components should be studied in detail to delineate their diverse roles and functions in the prevention and treatment of several diseases.
Collapse
Affiliation(s)
- Divya Yadav
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
18
|
The ultrasound extract of Pleurotus pulmonarius (Fr.) Quél alleviates metabolic syndromes in hyperlipidaemic Wistar-Kyoto rats fed with a high-fat diet. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Giunco AJ, Paz MFD, Fonseca GG. Development and Evaluation of Low-Carb Cakes Produced from Green Bocaiuva Pulp Enriched with Pleurotus Ostreatus. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2021.1929637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aline Janaina Giunco
- Faculty of Biological and Environmental Sciences, Laboratory of Bioengineering, Federal University of Grande Dourados, Federal
| | - Marcelo Fossa Da Paz
- Laboratory of Enzymology and Fermentation Processes, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Gustavo Graciano Fonseca
- Faculty of Biological and Environmental Sciences, Laboratory of Bioengineering, Federal University of Grande Dourados, Federal
| |
Collapse
|
20
|
Comparison of Bioactive Substances Content between Commercial and Wild-Type Isolates of Pleurotus eryngii. SUSTAINABILITY 2021. [DOI: 10.3390/su13073777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mushrooms belonging to Pleurotus genus have been demonstrated to have important nutritional and medicinal value and their regular intake prevent many diseases, reduce the infection probability and increase immunity. In order to investigate the bioactive compounds produced by seven commercial (‘142 F’, ‘142 E’, ‘D+’, ‘V turbo’, ‘V 142’, ‘A 12’, ‘V 160’) and five wild-type (‘Albino 1107’, ‘Altamura 1603’, ‘Muro Lucano 139’, ‘Conversano 1250’, ‘Albino beige chiaro 1094’) P. eryngii isolates, the following qualitative analyses were performed: Total polyphenol content, antioxidant activity (EC50 of ABTS) and antiradical power (ARP) in fresh lyophilized and dry basidioma, and water content, β-glucans and phenolic compounds in fresh samples. Standard methods were employed for each of the above mentioned aims. Total polyphenol content was diverse among the P. eryngii isolates. In particular, an elevated polyphenolic content was found in fresh lyophilized P. eryngii samples of the commercial isolates ‘V 142’ followed by ‘A 12’. The highest antiradical activity (ARP) was obtained by ‘Muro Lucano 139’ isolate. Wild P. eryngii isolates were characterized by higher water and β-glucans contents compared to the commercial ones, and the highest values were registered for the ‘Albino beige chiaro 1094’ isolate. In conclusion, the present study allowed us to identify the commercial and wild-type P. eryngii isolates from the Basilicata region, with high nutritional and medicinal value based on their bioactive compounds.
Collapse
|
21
|
Bio-funcional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104326] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
22
|
Therapeutic potential of mushrooms in diabetes mellitus: Role of polysaccharides. Int J Biol Macromol 2020; 164:1194-1205. [DOI: 10.1016/j.ijbiomac.2020.07.145] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
|
23
|
Tung YT, Pan CH, Chien YW, Huang HY. Edible Mushrooms: Novel Medicinal Agents to Combat Metabolic Syndrome and Associated Diseases. Curr Pharm Des 2020; 26:4970-4981. [DOI: 10.2174/1381612826666200831151316] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022]
Abstract
Metabolic syndrome is an aggregation of conditions and associated with an increased risk of developing
diabetes, obesity and cardiovascular diseases (CVD). Edible mushrooms are widely consumed in many countries
and are valuable components of the diet because of their attractive taste, aroma, and nutritional value. Medicinal
mushrooms are higher fungi with additional nutraceutical attributes having low-fat content and a transisomer
of unsaturated fatty acids along with high fiber content, biologically active compounds such as polysaccharides
or polysaccharide β-glucans, alkaloids, steroids, polyphenols and terpenoids. In vitro experiments, animal
models, and even human studies have demonstrated not only fresh edible mushroom but also mushroom
extract that has great therapeutic applications in human health as they possess many properties such as antiobesity,
cardioprotective and anti-diabetic effect. They are considered as the unmatched source of healthy foods
and drugs. The focus of this report was to provide a concise and complete review of the novel medicinal properties
of fresh or dry mushroom and extracts, fruiting body or mycelium and its extracts, fiber, polysaccharides,
beta-glucan, triterpenes, fucoidan, ergothioneine from edible mushrooms that may help to prevent or treat metabolic
syndrome and associated diseases.
Collapse
Affiliation(s)
- Yu-Tang Tung
- Graduate Institute of Metabolism and Obesity Science, Taipei Medical University, Taipei City 11031, Taiwan
| | - Chun-Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei City 11031, Taiwan
| | - Yi-Wen Chien
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei City 11031, Taiwan
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Science, Taipei Medical University, Taipei City 11031, Taiwan
| |
Collapse
|