1
|
Pavlović R, Crailsheim K, Petrović M, Goessler W, Zarić NM. Recycling honey bee drone brood for sustainable beekeeping. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:37-44. [PMID: 39786553 PMCID: PMC11818385 DOI: 10.1093/jee/toae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
Pollination by insects is vital for global agriculture, with honey bees (Apis mellifera L.) being the most important pollinators. Honey bees are exposed to numerous stressors, including disease, pesticides, and inadequate nutrition, resulting in significant colony losses. This study investigates the use of drone brood to mitigate these problems. Drone brood, which is normally discarded during varroa mite (Varroa destructor, Anderson and Trueman) management, is rich in proteins, fats, and essential minerals. We compared drone brood with an already suggested pollen supplement (Tenebrio [Tenebrio molitor L.] flour). The results indicate that drone brood flour is a viable source of proteins, fats, and minerals and is potentially antimicrobial due to its high content of elements with known antimicrobial properties. It meets the nutritional needs of honey bees while mitigating the effects of varroa mites. The use of drone brood flour can provide high-quality beeswax, surplus of pollen, and improve bee health, which promotes sustainable beekeeping.
Collapse
Affiliation(s)
- Ratko Pavlović
- Faculty of Chemistry, Department of Biochemistry, University of Belgrade, Belgrade, Serbia
| | | | - Miloš Petrović
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry for Health and Environment, University of Graz, Graz, Austria
| | - Nenad M Zarić
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Ansaloni LS, Kristl J, Domingues CEC, Gregorc A. An Overview of the Nutritional Requirements of Honey Bees ( Apis mellifera Linnaeus, 1758). INSECTS 2025; 16:97. [PMID: 39859678 PMCID: PMC11766133 DOI: 10.3390/insects16010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Honey bees are known for their wide global distribution, their ease of handling, and their economic and ecological value. However, they are often exposed to a wide variety of stress factors. Therefore, it is essential for beekeepers to maintain healthy bee colonies. In this context, a balanced diet is recommended to support the growth of strong and healthy honey bee colonies. The purpose of this review is therefore to provide an overview of the nutritional requirements of Apis mellifera and their importance for the maintenance of healthy bee colonies. An adequate diet includes the consumption of sufficient amounts of proteins, carbohydrates, lipids, amino acids, vitamins, minerals, water, and essential sterols, and a diet based on multi-floral pollen is desirable. However, when honey bee colonies are located near agroecosystems with lower resource diversity, both brood rearing and colony longevity may decrease, making them more susceptible to parasites and diseases. On the other hand, efforts have been made to improve the health of honey bee colonies with the help of nutritional supplements consisting of a variety of components. Nevertheless, studies have shown that even with these supplements, a lack of nutrients can still be an issue for honey bee colonies. Furthermore, future research should focus on identifying nutritional supplements that can better replicate natural diet diversity and assessing long-term effects on honey bee colony resilience, especially in low-flowering areas. This review discusses the interaction between nutrient requirements and the effects of supplements on colony health.
Collapse
Affiliation(s)
- Leticia S. Ansaloni
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia; (J.K.); (C.E.C.D.); (A.G.)
| | | | | | | |
Collapse
|
3
|
Luca L, Pauliuc D, Oroian M. Honey microbiota, methods for determining the microbiological composition and the antimicrobial effect of honey - A review. Food Chem X 2024; 23:101524. [PMID: 38947342 PMCID: PMC11214184 DOI: 10.1016/j.fochx.2024.101524] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Honey is a natural product used since ancient times due to its taste, aroma, and therapeutic properties (antibacterial, antiviral, anti-inflammatory, and antioxidant activity). The purpose of this review is to present the species of microorganisms that can survive in honey and the effect they can have on bees and consumers. The techniques for identifying the microorganisms present in honey are also described in this study. Honey contains bacteria, yeasts, molds, and viruses, and some of them may present beneficial properties for humans. The antimicrobial effect of honey is due to its acidity and high viscosity, high sugar concentration, low water content, the presence of hydrogen peroxide and non-peroxidase components, particularly methylglyoxal (MGO), phenolic acids, flavonoids, proteins, peptides, and non-peroxidase glycopeptides. Honey has antibacterial action (it has effectiveness against bacteria, e.g. Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter, etc.), antifungal (effectiveness against Candida spp., Aspergillus spp., Fusarium spp., Rhizopus spp., and Penicillium spp.), antiviral (effectiveness against SARS-CoV-2, Herpes simplex virus type 1, Influenza virus A and B, Varicella zoster virus), and antiparasitic action (effectiveness against Plasmodium berghei, Giardia and Trichomonas, Toxoplasma gondii) demonstrated by numerous studies that are comprised and discussed in this review.
Collapse
Affiliation(s)
- Liliana Luca
- Suceava-Botoșani Regional Innovative Bioeconomy Cluster Association, 720229 Suceava, Romania
| | - Daniela Pauliuc
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
4
|
Pavlović R, Brodschneider R, Goessler W, Stanisavljević L, Vujčić Z, Zarić NM. Micronutrient Deficiency May Be Associated with the Onset of Chalkbrood Disease in Honey Bees. INSECTS 2024; 15:269. [PMID: 38667399 PMCID: PMC11050715 DOI: 10.3390/insects15040269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Chalkbrood is a disease of honey bee brood caused by the fungal parasite Ascosphaera apis. Many factors such as genetics, temperature, humidity and nutrition influence the appearance of clinical symptoms. Poor nutrition impairs the immune system, which favors the manifestation of symptoms of many honey bee diseases. However, a direct link between dietary ingredients and the symptoms of chalkbrood disease has not yet been established. We show here that the elemental composition of chalkbrood mummies and healthy larvae from the same infected hives differ, as well as that mummies differ from larvae from healthy hives. Chalkbrood mummies had the highest concentration of macroelements such as Na, Mg, P, S, K and Ca and some microelements such as Rb and Sn, and at the same time the lowest concentration of B, As, Sr, Ag, Cd, Sb, Ba and Pb. Larvae from infected hives contained less Pb, Ba, Cs, Sb, Cd, Sr, As, Zn, Cu, Ni, Co, Mn, Cr, V and Al in contrast to healthy larvae from a disease-free apiary. This is the first study to demonstrate such differences, suggesting that an infection alters the larval nutrition or that nutrition is a predisposition for the outbreak of a chalkbrood infection. Though, based on results obtained from a case study, rather than from a controlled experiment, our findings stress the differences in elements of healthy versus diseased honey bee larvae.
Collapse
Affiliation(s)
- Ratko Pavlović
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (R.P.); (Z.V.)
| | - Robert Brodschneider
- Department of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Walter Goessler
- Analytical Chemistry for Health and Environment, Institute of Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria;
| | - Ljubiša Stanisavljević
- Faculty of Biology, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Zoran Vujčić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (R.P.); (Z.V.)
| | - Nenad M. Zarić
- Analytical Chemistry for Health and Environment, Institute of Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria;
- Faculty of Biology, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| |
Collapse
|
5
|
Sasidharan R, Junker RR, Eilers EJ, Müller C. Floral volatiles evoke partially similar responses in both florivores and pollinators and are correlated with non-volatile reward chemicals. ANNALS OF BOTANY 2023; 132:1-14. [PMID: 37220889 PMCID: PMC10550281 DOI: 10.1093/aob/mcad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Plants often use floral displays to attract mutualists and prevent antagonist attacks. Chemical displays detectable from a distance include attractive or repellent floral volatile organic compounds (FVOCs). Locally, visitors perceive contact chemicals including nutrients but also deterrent or toxic constituents of pollen and nectar. The FVOC and pollen chemical composition can vary intra- and interspecifically. For certain pollinator and florivore species, responses to these compounds are studied in specific plant systems, yet we lack a synthesis of general patterns comparing these two groups and insights into potential correlations between FVOC and pollen chemodiversity. SCOPE We reviewed how FVOCs and non-volatile floral chemical displays, i.e. pollen nutrients and toxins, vary in composition and affect the detection by and behaviour of insect visitors. Moreover, we used meta-analyses to evaluate the detection of and responses to FVOCs by pollinators vs. florivores within the same plant genera. We also tested whether the chemodiversity of FVOCs, pollen nutrients and toxins is correlated, hence mutually informative. KEY RESULTS According to available data, florivores could detect more FVOCs than pollinators. Frequently tested FVOCs were often reported as pollinator-attractive and florivore-repellent. Among FVOCs tested on both visitor groups, there was a higher number of attractive than repellent compounds. FVOC and pollen toxin richness were negatively correlated, indicating trade-offs, whereas a marginal positive correlation between the amount of pollen protein and toxin richness was observed. CONCLUSIONS Plants face critical trade-offs, because floral chemicals mediate similar information to both mutualists and antagonists, particularly through attractive FVOCs, with fewer repellent FVOCs. Furthermore, florivores might detect more FVOCs, whose richness is correlated with the chemical richness of rewards. Chemodiversity of FVOCs is potentially informative of reward traits. To gain a better understanding of the ecological processes shaping floral chemical displays, more research is needed on floral antagonists of diverse plant species and on the role of floral chemodiversity in visitor responses.
Collapse
Affiliation(s)
- Rohit Sasidharan
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Robert R Junker
- Department of Biology, Evolutionary Ecology of Plants, University of Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, Kapitalgasse 4-6, 5020 Salzburg, Austria
| | - Elisabeth J Eilers
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
- CTL GmbH Bielefeld, Krackser Straße 12, 33659 Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
6
|
Filipiak ZM, Ollerton J, Filipiak M. Uncovering the significance of the ratio of food K:Na in bee ecology and evolution. Ecology 2023; 104:e4110. [PMID: 37232411 DOI: 10.1002/ecy.4110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Bees provide important ecological services, and many species are threatened globally, yet our knowledge of wild bee ecology and evolution is limited. While evolving from carnivorous ancestors, bees had to develop strategies for coping with limitations imposed on them by a plant-based diet, with nectar providing energy and essential amino acids and pollen as an extraordinary, protein- and lipid-rich food nutritionally similar to animal tissues. Both nectar and pollen display one characteristic common to plants, a high ratio of potassium to sodium (K:Na), potentially leading to bee underdevelopment, health problems, and death. We discuss why and how the ratio of K:Na contributes to bee ecology and evolution and how considering this factor in future studies will provide new knowledge, more accurately depicting the relationship of bees with their environments. Such knowledge is essential for understanding how plants and bees function and interact and is needed to effectively protect wild bees.
Collapse
Affiliation(s)
- Zuzanna M Filipiak
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Jeff Ollerton
- Faculty or Arts, Science and Technology, University of Northampton, Northampton, UK
- Kunming Institute of Botany, Kunming, China
| | - Michał Filipiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
7
|
Stauch KLN, Chicas-Mosier AM, Abramson CI. Preliminary Evidence That Fiji Water Has Protective Effects against Aluminum Toxicity in Honey Bees ( Apis mellifera). INSECTS 2023; 14:211. [PMID: 36835780 PMCID: PMC9958646 DOI: 10.3390/insects14020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Researchers have determined that bioavailable aluminum chloride (AlCl3) may affect honey bee behavior (e.g., foraging patterns and locomotion) and physiology (e.g., abdominal spasms). The purpose of these experiments was to determine if Fiji water reduces the impacts of AlCl3 toxicity in bees by measuring circadian rhythmicity (number of times bees crossed the centerline during the day and night), average daily activity (average number of times bees crossed the centerline per day), and mortality rates (average number of days survived) using an automated monitor apparatus. Overall, the AlCl3 before and after Fiji groups had significantly higher average daily activity and rhythmicity rates compared to their respective AlCl3 before and after deionized water (DI) groups. One of the AlCl3 before DI groups exhibited no difference in rhythmicity rates compared to its respective AlCl3 after Fiji group. Overall, these results suggest that Fiji water might exert protective effects against AlCl3. The AlCl3 groups paired with Fiji water had higher activity and rhythmicity levels compared to the AlCl3 groups paired with DI. It is important for researchers to continue to study aluminum and possible preventatives for aluminum uptake.
Collapse
Affiliation(s)
- Kiri Li N. Stauch
- Laboratory of Behavioral Biology and Comparative Psychology, Department of Psychology, Oklahoma State University, Stillwater, OK 66047, USA
| | - Ana M. Chicas-Mosier
- Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS 66045, USA
| | - Charles I. Abramson
- Laboratory of Behavioral Biology and Comparative Psychology, Department of Psychology, Oklahoma State University, Stillwater, OK 66047, USA
| |
Collapse
|
8
|
Castle D, Alkassab AT, Steffan-Dewenter I, Pistorius J. Nutritional resources modulate the responses of three bee species to pesticide exposure. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130304. [PMID: 36368063 DOI: 10.1016/j.jhazmat.2022.130304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/06/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The response of bee species to various stressors is assumed to depend on the availability of sufficient nutrients in their environment. We compare the response of three bee species (Apis mellifera, Bombus terrestris, Osmia bicornis) under laboratory conditions. Survival, physiology, and sensitivity, after exposure to the fungicide prochloraz, the insecticide chlorantraniliprole, and their mixture with different nutritional resources (sugar only, sugar with amino acids or pollen) were observed. Prochloraz reduced the bee survival of A. mellifera and O. bicornis fed with pollen, but not with other diets. Chlorantraniliprole impaired the survival of A. mellifera fed with sugar or pollen diet, but not with amino acid diet. The mixture impaired survival of A. mellifera and O. bicornis in association with every diet. B. terrestris was only affected by chlorantraniliprole and its mixture with prochloraz fed with sugar diet. The activity of P450 reductase was higher in A. mellifera fed with amino acids in all treatments, whereas no effect emerged in O. bicornis and B. terrestris. Our results indicate that the sensitivity of bee species after exposure to agrochemicals is affected by diet. Thus, balanced and species-dependent nutrition ameliorated the effects. Further field studies are necessary to evaluate the potential effects of such mixtures on bee populations.
Collapse
Affiliation(s)
- Denise Castle
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Messeweg 11/12, Braunschweig, Germany; University of Würzburg, Department of Animal Ecology and Tropical Biology, Biocenter, Am Hubland, Würzburg, Germany.
| | - Abdulrahim T Alkassab
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Messeweg 11/12, Braunschweig, Germany
| | - Ingolf Steffan-Dewenter
- University of Würzburg, Department of Animal Ecology and Tropical Biology, Biocenter, Am Hubland, Würzburg, Germany
| | - Jens Pistorius
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Messeweg 11/12, Braunschweig, Germany
| |
Collapse
|
9
|
Filipiak M, Shields MW, Cairns SM, Grainger MNC, Wratten SD. The conserved and high K-to-Na ratio in sunflower pollen: Possible implications for bee health and plant-bee interactions. FRONTIERS IN PLANT SCIENCE 2022; 13:1042348. [PMID: 36388528 PMCID: PMC9664163 DOI: 10.3389/fpls.2022.1042348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Sodium (Na) concentrations are low in plant tissues, and its metabolic function in plants is minor; however, Na is a key nutrient for plant consumers. Previous studies have thus far focused on Na concentration. Nevertheless, a balanced potassium (K) to Na ratio (K:Na) is more important than Na concentration alone since food with high K:Na has detrimental effects on consumers irrespective of Na concentration. Therefore, plants may actively regulate K:Na in their tissues and products, shaping plant-insect interactions. Studies considering nutritional aspects of plant-insect interactions have focused on nonreproductive tissues and nectar. In this study, we consider pollen as serving a primary reproductive function for plants as well as a food of pollinivores. Plants might regulate K:Na in pollen to affect their interactions with pollinivorous pollinators. To investigate whether such a mechanism exists, we manipulated Na concentrations in soil and measured the proportion of K, Na, and 13 other nutrient elements in the pollen of two sunflower (Helianthus annuus) cultivars. This approach allowed us to account for the overall nutritional quality of pollen by investigating the proportions of many elements that could correlate with the concentrations of K and Na. Of the elements studied, only the concentrations of Na and K were highly correlated. Pollen K:Na was high in both cultivars irrespective of Na fertilization, and it remained high regardless of pollen Na concentration. Interestingly, pollen K:Na did not decrease as pollen increased the Na concentration. We hypothesize that high K:Na in pollen might benefit plant fertilization and embryonic development; therefore, a tradeoff might occur between producing low K:Na pollen as a reward for pollinators and high K:Na pollen to optimize the plant fertilization process. This is the first study to provide data on pollen K:Na regulation by plants. Our findings broaden the understanding of plant-bee interactions and provide a foundation for a better understanding of the role of the soil-plant-pollen-pollinator pathway in nutrient cycling in ecosystems. Specifically, unexplored costs and tradeoffs related to balancing the K:Na by plants and pollinivores might play a role in past and current shaping of pollination ecology.
Collapse
Affiliation(s)
- Michał Filipiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Morgan W. Shields
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Sarah M. Cairns
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | | | - Stephen D. Wratten
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
10
|
Topal E, Çakıcı N, Margaoan R, Takma Ç, Güney F, Kösoğlu M, Cornea-Cipcigan M, Atmaca H. Annual Development Performance of Fixed Honeybee Colonies linked with Chemical and Mineral Profile of Bee Collected Pollen. Chem Biodivers 2022; 19:e202200468. [PMID: 35794846 DOI: 10.1002/cbdv.202200468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/06/2022] [Indexed: 11/08/2022]
Abstract
Climate change affects plant phenology and, as a result, can damage nectar and pollen sources, which are the basic needs of bees during flowering. This situation creates nutritional stress for bee colonies in the region. Changing climatic conditions, the use of agricultural lands adversely affects honeybees and beekeepers. The aim of this study is to determine the annual development performance of fixed honeybee colonies linked with the chemical and mineral profile of bee collected pollen. According to the research findings, in terms of colony development parameters, the number of bee frames (9.17) was found to be at the highest level in May, and in terms of brood area (4652.35 cm 2 ) in April (p<0.05). March, April, and May are the most abundant months in terms of pollen collection of the colonies (p<0.05). The pollen samples collected are rich in potassium, sodium, calcium, magnesium, silicon, and iron. There are differences between months in terms of pollen sources and mineral levels. Especially in stationary beekeeping, additional feeding is required during critical periods. The existing flora is insufficient for the future of the honey bee. In periods when the flora is weak, important plants for the honey bee should be grown in the region.
Collapse
Affiliation(s)
- Erkan Topal
- Central Research Institute of Food and Feed Control: Gida ve Yem Kontrol Merkez Arastirma Enstitusu Mudurlugu, Food Control, Kazımdirik, Gıda,Tarım Ve Hayvancılık Bakanlığı İzmir İl Md. 32 FC, 35100, Izmir, TURKEY
| | - Neslihan Çakıcı
- Ordu University: Ordu Universitesi, Apiculture Research Institute, Cumhuriyet Yerleşkesi Cumhuriyet Mahallesi Altın Ordu, Ordu, TURKEY
| | - Rodica Margaoan
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca Faculty of Horticulture: Universitatea de Stiinte Agricole si Medicina Veterinara Cluj-Napoca Facultatea de Horticultura, Biotechnology and Microbiology, Calea Manastur 3-5, USAMV, cladirea-ICHAT, 400372, Cluj-Napoca, ROMANIA
| | - Çiğdem Takma
- Ege University: Ege Universitesi, Department of Animal Science, Erzene Mahallesi Ege Üniversitesi Merkez Yerleşkesi, İzmir, TURKEY
| | - Fazıl Güney
- Ordu University: Ordu Universitesi, Apiculture Research Institute, Cumhuriyet Yerleşkesi PK 52200, Izmir, TURKEY
| | - Mustafa Kösoğlu
- Aegean Agricultural Research Institute, Apiculture Research Center, P.O. Box 9 Menemen 35661, Menemen, TURKEY
| | - Mihaiela Cornea-Cipcigan
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca Faculty of Horticulture: Universitatea de Stiinte Agricole si Medicina Veterinara Cluj-Napoca Facultatea de Horticultura, Horticulture, Calea Manastur 3-5, USAMV, cladirea-ICHAT, 400372, Cluj-Napoca, ROMANIA
| | - Hilal Atmaca
- Istanbul Directorate of Food Control Laboratory, Apiculture, Şenlikköy, Florya Cd. No:78, Bakırköy/İstanbul, TURKEY
| |
Collapse
|
11
|
Khan KA, Rafique MK, Lashari MA, Iqbal A, Mahmood R, Ahmed AM, Khoso FN, Ahmad S, AL-Shehri BM, Mohammed MEA, Ghramh HA. Instrumental insemination: A nontraditional technique to produce superior quality honey bee (Apis mellifera) queens. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102077. [DOI: 10.1016/j.jksus.2022.102077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
|
12
|
de Sousa RT, Darnell R, Wright GA. Behavioural regulation of mineral salt intake in honeybees: a self-selection approach. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210169. [PMID: 35491591 PMCID: PMC9058550 DOI: 10.1098/rstb.2021.0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Minerals are required in small amounts to sustain metabolic activity in animals, but mineral deficiencies can also lead to metabolic bottlenecks and mineral excesses can induce toxicity. For these reasons, we could reasonably expect that micronutrients are actively regulated around nutritional optima. Honeybees have co-evolved with flowering plants such that their main sources of nutrients are floral pollen and nectar. Like other insects, honeybees balance their intake of multiple macronutrients during food consumption using a combination of pre- and post-ingestive mechanisms. How they regulate their intake of micronutrients using these mechanisms has rarely been studied. Using two-choice feeding assays, we tested whether caged and broodless young workers preferred solutions containing individual salts (NaCl, KCl, CaCl2, MgCl2) or metals (FeCl3, CuCl2, ZnCl2, MnCl2) in a concentration-dependent manner. We found that young adult workers could only self-select and optimize their dietary intake around specific concentrations of sodium, iron and copper. Bees largely avoided high concentration mineral solutions to minimize toxicity. These experiments demonstrate the limits of the regulation of intake of micronutrients in honeybees. This is the first study to compare this form of behaviour in one organism for eight different micronutrients. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Raquel T. de Sousa
- John Krebs Field Station, Department of Zoology, University of Oxford, Oxford OX2 8QJ, UK,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Robyn Darnell
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Geraldine A. Wright
- John Krebs Field Station, Department of Zoology, University of Oxford, Oxford OX2 8QJ, UK
| |
Collapse
|
13
|
Fahad Raza M, Anwar M, Husain A, Rizwan M, Li Z, Nie H, Hlaváč P, Ali MA, Rady A, Su S. Differential gene expression analysis following olfactory learning in honeybee (Apis mellifera L.). PLoS One 2022; 17:e0262441. [PMID: 35139088 PMCID: PMC8827436 DOI: 10.1371/journal.pone.0262441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/26/2021] [Indexed: 11/19/2022] Open
Abstract
Insects change their stimulus-response through the perception of associating these stimuli with important survival events such as rewards, threats, and mates. Insects develop strong associations and relate them to their experiences through several behavioral procedures. Among the insects, Apis species, Apis mellifera ligustica are known for their outstanding ability to learn with tremendous economic importance. Apis mellifera ligustica has a strong cognitive ability and promising model species for investigating the neurobiological basis of remarkable olfactory learning abilities. Here we evaluated the olfactory learning ability of A. mellifera by using the proboscis extension reflex (PER) protocol. The brains of the learner and failed-learner bees were examined for comparative transcriptome analysis by RNA-Seq to explain the difference in the learning capacity. In this study, we used an appetitive olfactory learning paradigm in the same age of A. mellifera bees to examine the differential gene expression in the brain of the learner and failed-learner. Bees that respond in 2nd and 3rd trials or only responded to 3rd trials were defined as learned bees, failed-learner individuals were those bees that did not respond in all learning trials The results indicate that the learning ability of learner bees was significantly higher than failed-learner bees for 12 days. We obtained approximately 46.7 and 46.4 million clean reads from the learner bees failed-learner bees, respectively. Gene expression profile between learners' bees and failed-learners bees identified 74 differentially expressed genes, 57 genes up-regulated in the brains of learners and 17 genes were down-regulated in the brains of the bees that fail to learn. The qRT-PCR validated the differently expressed genes. Transcriptome analyses revealed that specific genes in learner and failed-learner bees either down-regulated or up-regulated play a crucial role in brain development and learning behavior. Our finding suggests that down-regulated genes of the brain involved in the integumentary system, storage proteins, brain development, sensory processing, and neurodegenerative disorder may result in reduced olfactory discrimination and olfactory sensitivity in failed-learner bees. This study aims to contribute to a better understanding of the olfactory learning behavior and gene expression information, which opens the door for understanding of the molecular mechanism of olfactory learning behavior in honeybees.
Collapse
Affiliation(s)
- Muhammad Fahad Raza
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Arif Husain
- Department of Soil and Environmental Sciences, Faculty of Agricultural Sciences, Ghazi University Dera Ghazi Khan, Dera Ghazi Khan, Pakistan
| | - Muhmmad Rizwan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiguo Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongyi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pavol Hlaváč
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M. Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Ahmad S, Khan KA, Khan SA, Ghramh HA, Gul A. Comparative assessment of various supplementary diets on commercial honey bee (Apis mellifera) health and colony performance. PLoS One 2021; 16:e0258430. [PMID: 34634080 PMCID: PMC8504734 DOI: 10.1371/journal.pone.0258430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
A healthy honey bee stock is critical to the beekeeping industry and the sustainability of the ecosystem. The quality of the supplemental diet influences the development and strength of the colony, especially during the pollen dearth period in the surrounding environment. However, the extent to which pollen substitute protein feeding affects honey bee colony parameters is not fully known. We conducted this study to test the influence of various supplemental diets on foraging effort, pollen load, capped brood area, population density, and honey yield. The treatment groups were supplied with patties of pollen substitute diets, whereas sugar syrup was given to the control group. Our results indicated that honey bees consumed a significantly higher amount of Diet 1 (45 g soybean flour + 15 g Brewer's yeast + 75 g powdered sugar + 7.5 g skimmed milk + 7.5 g date palm pollen + 200 mL sugar syrup supplement with Vitamin C) followed by others supplemented diets. Further, pollen load, worker-sealed brood area, population strength, and honey yield differed significantly when Diet 1 was consumed instead of other supplemental diets. The proportion of biological parameters was less in the control group as compared to other treatments. This study highlights the potential of supplemental diets to improve the bee's health and colony development when the pollens availability and diversity are insufficient.
Collapse
Affiliation(s)
- Saboor Ahmad
- Department of Entomology, Faculty of Crop and Food Sciences, Pir Mehr Ali Shah (PMAS) Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Khalid Ali Khan
- Research Centre for Advance Material Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Shahmshad Ahmed Khan
- Department of Entomology, Faculty of Crop and Food Sciences, Pir Mehr Ali Shah (PMAS) Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Hamed A. Ghramh
- Research Centre for Advance Material Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Aziz Gul
- Department of Animal Science, Faculty of Agriculture, Hatay Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|