1
|
Tlak Gajger I, Abou-Shaara HF, Smodiš Škerl MI. Strategies to Mitigate the Adverse Impacts of Viral Infections on Honey Bee ( Apis mellifera L.) Colonies. INSECTS 2025; 16:509. [PMID: 40429222 PMCID: PMC12112508 DOI: 10.3390/insects16050509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025]
Abstract
Honey bees (Apis mellifera) play a crucial role in global food production through the pollination of various crops. These vital insects are susceptible to a range of viral pathogens that can disrupt their normal behavior and physiology, ultimately affecting colony dynamics and survival. There are diverse viruses that infect honey bees at different life stages, with a year-round prevalence. There are multiple pathways through which viruses can be transmitted among colonies. Notably, there is also a lack of commercial treatments against viral infections in bees, but some promising strategies exist to mitigate their negative effects, including vector control, and the implementation of good beekeeping practices and biosecurity measures. While methods for treating infected colonies have garnered attention, they receive less focus compared to aspects like transmission methods and seasonal prevalence of viruses. This article aims to review the aforementioned strategies in light of the available literature. It presents succinct and practical approaches categorized based on their potential direct or indirect effects on viruses, providing beekeepers and researchers with an overview of both fully established and still-developing methods. Controlling the ectoparasitic Varroa destructor mite population, which significantly impacts viral prevalence and virulence in bees, is crucial for reducing infections. Practical approaches such as selectively breeding honey bee populations resistant to viruses and ensuring proper nutrition are important strategies. Moreover, genetic methods have also been proposed and tested. The article not only emphasizes these methods but also discusses knowledge gaps and suggests future solutions to improve the health and productivity of honey bee colonies.
Collapse
Affiliation(s)
- Ivana Tlak Gajger
- Department of Biology and Pathology of Bees and Fish, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Hossam F. Abou-Shaara
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt;
| | | |
Collapse
|
2
|
Carr SM. Multiple mitogenomes indicate Things Fall Apart with Out of Africa or Asia hypotheses for the phylogeographic evolution of Honey Bees (Apis mellifera). Sci Rep 2023; 13:9386. [PMID: 37296293 PMCID: PMC10256785 DOI: 10.1038/s41598-023-35937-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Previous morpho-molecular studies of evolutionary relationships within the economically important genus of honey bees (Apis), including the Western Honey Bee (A. mellifera L.), have suggested Out of Africa or Asia origins and subsequent spread to Europe. I test these hypotheses by a meta-analysis of complete mitochondrial DNA coding regions (11.0 kbp) from 22 nominal subspecies represented by 78 individual sequences in A. mellifera. Parsimony, distance, and likelihood analyses identify six nested clades: Things Fall Apart with Out of Africa or Asia hypotheses. Molecular clock-calibrated phylogeographic analysis shows instead a basal origin of A. m. mellifera in Europe ~ 780 Kya, and expansion to Southeast Europe and Asia Minor ~ 720 Kya. Eurasian bees spread southward via a Levantine/Nilotic/Arabian corridor into Africa ~ 540 Kya. An African clade re-established in Iberia ~ 100 Kya spread thereafter to westerly Mediterranean islands and back into North Africa. Nominal subspecies within the Asia Minor and Mediterranean clades are less differentiated than are individuals within other subspecies. Names matter: paraphyletic anomalies are artefacts of mis-referral in GenBank of sequences to the wrong subspecies, or use of faulty sequences, which are clarified by inclusion of multiple sequences from available subspecies.
Collapse
Affiliation(s)
- Steven M Carr
- Genetics, Evolution, and Molecular Systematics Laboratory, Department of Biology, Memorial University of Newfoundland, St John's, NL, A1C 5S9, Canada.
| |
Collapse
|
3
|
El-Seedi HR, El-Wahed AAA, Zhao C, Saeed A, Zou X, Guo Z, Hegazi AG, Shehata AA, El-Seedi HHR, Algethami AF, Al Naggar Y, Agamy NF, Rateb ME, Ramadan MFA, Khalifa SAM, Wang K. A Spotlight on the Egyptian Honeybee ( Apis mellifera lamarckii). Animals (Basel) 2022; 12:ani12202749. [PMID: 36290135 PMCID: PMC9597722 DOI: 10.3390/ani12202749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary The Egyptian honeybee (Apis mellifera lamarckii) is one of the honeybee subspecies known for centuries since the ancient Egypt civilization. The subspecies of the Egyptian honeybee is distinguished by certain traits of appearance and behavior that were well-adapted to the environment and unique in a way that it is resistant to bee diseases, such as the Varroa disease. The subspecies is different than those found in Europe and is native to southern Egypt. Therefore, a special care should be paid to the vulnerable A. m. lamarckii subspecies and greater knowledge about the risk factors as well as conservation techniques will protect these bees. Additionally, more qualitative and quantitative measures will be taken to obtain deep insights into the A. m. lamarckii products’ chemical profile and biological characters. Abstract Egypt has an ongoing long history with beekeeping, which started with the ancient Egyptians making various reliefs and inscriptions of beekeeping on their tombs and temples. The Egyptian honeybee (Apis mellifera lamarckii) is an authentic Egyptian honeybee subspecies utilized in apiculture. A. m. lamarckii is a distinct honeybee subspecies that has a particular body color, size, and high levels of hygienic behavior. Additionally, it has distinctive characteristics; including the presence of the half-queens, an excessive number of swarm cells, high adaptability to climatic conditions, good resistance to specific bee diseases, including the Varro disorder, and continuous breeding during the whole year despite low productivity, using very little propolis, and tending to abscond readily. This review discusses the history of beekeeping in Egypt and its current situation in addition to its morphology, genetic analysis, and distinctive characters, and the defensive behaviors of native A. m. lamarckii subspecies.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Nanjing 210024, China
- Correspondence: (H.R.E.-S.); (S.A.M.K.); Tel.: +46-700-43-43-43 (H.R.E.-S.)
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ahmed G. Hegazi
- Zoonotic Diseases Department, National Research Centre, Giza 12622, Egypt
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Menoufia 22857, Egypt
- PerNaturam GmbH, An der Trift 8, 56290 Gödenroth, Germany
- Prophy-Institute for Applied Prophylaxis, 59159 Bönen, Germany
| | | | - Ahmed F. Algethami
- Alnahal Aljwal Foundation Saudi Arabia, P.O. Box 617, Makkah 24211, Saudi Arabia
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Neveen F. Agamy
- Nutrition Department, Food Analysis Division, High Institute of Public Health, Alexandria University, Alexandria 21561, Egypt
| | - Mostafa E. Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Mohamed F. A. Ramadan
- Central Agriculture Pesticides Laboratory, Pesticide Analysis Research Department, Agriculture Research Center, Giza 24221, Egypt
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
- Correspondence: (H.R.E.-S.); (S.A.M.K.); Tel.: +46-700-43-43-43 (H.R.E.-S.)
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
4
|
Khan KA, Rafique MK, Lashari MA, Iqbal A, Mahmood R, Ahmed AM, Khoso FN, Ahmad S, AL-Shehri BM, Mohammed MEA, Ghramh HA. Instrumental insemination: A nontraditional technique to produce superior quality honey bee (Apis mellifera) queens. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102077. [DOI: 10.1016/j.jksus.2022.102077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
|
5
|
Khan KA. Genetic diversity and phylogenetic relationship among the western and the Asian honey bees based on two mitochondrial gene segments (COI and ND5). Saudi J Biol Sci 2021; 28:6853-6860. [PMID: 34866985 PMCID: PMC8626216 DOI: 10.1016/j.sjbs.2021.07.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022] Open
Abstract
The Asian honey bee species i.e., Apis cerana (the eastern honey bee), A. dorsata (the giant honey bee), and the western or European honey bee (A. mellifera) collected from Pakistan were studied using partial sequences from two mitochondrial genes (i) the Cytochrome c oxidase I (COI) and (ii) the mitochondrially encoded NADH dehydrogenase 5 (ND5) and then compared with other honey bees sequences (already submitted from different countries around the globe) obtained after the national center for biotechnology information (NCBI). DNA sequences were analyzed employing molecular evolutionary genetics analysis and Kimura 2-parameter model, neighbor-joining method was applied to investigate phylogenetic relationships, and DNA sequence polymorphism was applied to measure the genetic diversity within the genus Apis. The phylogenetic analyses yielded consistent results. Based on COI gene fragment in two Asian and European honey bee species from Pakistan and from other countries showed considerable genetic diversity levels and deviation among the species. While in contrast the phylogenetic analyses based on ND5 gene fragment in Asian and European honey bee species from Pakistan and other countries showed comparatively higher genetic diversity indices and variations than the COI gene. So, in the genus Apis, the mitochondrial ND5 region has shown the possibility to answer the interactions among species. A further detailed work (by linking the analysis of other genomic and mitochondrial genes) is required for good quality solution to establish the concise genetic diversity and interaction among the Apis species. The objective of this study was to explore the extent of genetic differences and phylogenetic links among the three kinds of honey bee species from Pakistan and comparing them with other bee species around the globe.
Collapse
Affiliation(s)
- Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.,Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.,Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|