1
|
Wang M, Xu J, Ding Z, Xie J. Prolong the postharvest shelf life of spinach through the antioxidative ability of melatonin. Food Chem X 2023; 19:100769. [PMID: 37780277 PMCID: PMC10534088 DOI: 10.1016/j.fochx.2023.100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 10/03/2023] Open
Abstract
Spinach is also known as Persian cuisine, it is rich in nutrients such as protein, vitamin C and minerals, and has high nutritional value. In this study, Spinach was treated with melatonin in order to prolong its shelf life. Melatonin has strong antioxidant effects as an endogenous free radical scavenger. The spinach was sprayed with 0.10, 0.20 and 0.30 mg/mL melatonin solution after harvesting, and distilled water was used as control for low temperature storage at 4 °C. The results showed that melatonin spraying Spinach delayed the degradation of chlorophyll, especially the treatment of 0.20 mg/mL melatonin was the most effective. The content of soluble sugar and soluble protein in spinach tissue was kept high, the accumulation of malondialdehyde (MDA) was reduced, and the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were increased. These findings suggested that melatonin treatment may be a useful technique to prolong the postharvest life of spinach and improve its quality.
Collapse
Affiliation(s)
- Mingying Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jin Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
2
|
Ma D, Teng W, Yi B, Lin Y, Pan Y, Wang L. Effects of the nitrate and ammonium ratio on plant characteristics and Erythropalum scandens Bl. substrates. PLoS One 2023; 18:e0289659. [PMID: 37540657 PMCID: PMC10403090 DOI: 10.1371/journal.pone.0289659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/23/2023] [Indexed: 08/06/2023] Open
Abstract
Erythropalum scandens Bl. is a woody vegetable with high nitrogen demand that inhabits southern China. Ammonium and nitrate are the two main forms of inorganic nitrogen that plants directly absorb. A pot experiment was performed to determine the growth, physiological responses, and preferences of 12-month-old E. scandens seedlings for ammonium and nitrate. Aboveground and underground growth indexes, biomass, physiological and biochemical indexes (chlorophyll [Chl], soluble sugar, soluble protein and free proline contents), and substrate pH and nitrogen contents were determined under different nitrate and ammonium ratios (0 NO3-: 100 NH4+, 25 NO3-: 75 NH4+, 50 NO3-: 50 NH4+, 75 NO3-: 25 NH4+, and 100 NO3-: 0 NH4+), and the control (0 NO3-: 0 NH4+). The results showed that ammonium and nitrate improved the growth and physiological status of E. scandens seedlings in most of the treatments compared to the control. The aboveground growth status and biomass accumulation of E. scandens seedlings were significantly better under the 0 NO3-: 100 NH4+ treatment during fertilization compared with all other treatments. However, the growth status of the underground parts was not significantly different among treatments. Significant differences in osmoregulator content, except for soluble sugars, and Chl content were observed. Soluble sugars and soluble proteins were highest under the 0 NO3-: 100 NH4+ treatment at the end of fertilization (day 175). However, free proline accumulated during fertilization and the increase in NO3- indicated that excessive use of NO3- had a negative effect on the E. scandens seedlings. The order of accumulating nitrogen content was leaves > roots > stems. The highest N accumulation occurred in the aboveground parts under the 0 NO3-: 100 NH4+ treatment, whereas the highest N accumulation occurred in the underground parts under the 50 NO3-: 50 NH4+ treatment. Substrate pH increased at the end of fertilization (day 175) compared with the middle stage (day 75), while total nitrogen, ammonium, and nitrate were highly significantly different among the treatments. Total nitrogen and NH4+ content were the highest under the 0 NO3-: 100 NH4+ treatment, while NO3- content was the highest under the 100 NO3-: 0 NH4+ treatment. In conclusion, 12-month-old E. scandens seedlings grew best, and had better physiological conditions in NH4+ than NO3-. The 0 NO3-:100 NH4+ treatment (ammonium chloride 3.82 g/plant) resulted in the best growth and physiological conditions. Most of the growth and physiological indexes were inhibited with the increase in nitrate.
Collapse
Affiliation(s)
- Daocheng Ma
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Weichao Teng
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Biao Yi
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Yongzhi Lin
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Yuanyuan Pan
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Linghui Wang
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| |
Collapse
|
3
|
Li H, Wang Q, Huang T, Liu J, Zhang P, Li L, Xie H, Wang H, Liu C, Qin P. Transcriptome and Metabolome Analyses Reveal Mechanisms Underlying the Response of Quinoa Seedlings to Nitrogen Fertilizers. Int J Mol Sci 2023; 24:11580. [PMID: 37511340 PMCID: PMC10380953 DOI: 10.3390/ijms241411580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a dicotyledonous annual amaranth herb that belongs to the family Chenopodiaceae. Quinoa can be cultivated across a wide range of climatic conditions. With regard to its cultivation, nitrogen-based fertilizers have a demonstrable effect on the growth and development of quinoa. How crops respond to the application of nitrogen affects grain quality and yield. Therefore, to explore the regulatory mechanisms that underlie the responses of quinoa seedlings to the application of nitrogen, we selected two varieties (i.e., Dianli-1299 and Dianli-71) of quinoa seedlings and analyzed them using metabolomic and transcriptomic techniques. Specifically, we studied the mechanisms underlying the responses of quinoa seedlings to varying concentrations of nitrogen by analyzing the dynamics of metabolites and genes involved in arginine biosynthesis; carbon fixation; and alanine, aspartate, and glutamate biosynthetic pathways. Overall, we found that differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) of quinoa are affected by the concentration of nitrogen. We detected 1057 metabolites, and 29,012 genes were annotated for the KEGG. We also found that 15 DEMs and 8 DEGs were key determinants of the differences observed in quinoa seedlings under different nitrogen concentrations. These contribute toward a deeper understanding of the metabolic processes of plants under different nitrogen treatments and provide a theoretical basis for improving the nitrogen use efficiency (NUE) of quinoa.
Collapse
Affiliation(s)
- Hanxue Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Tingzhi Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Heng Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Hongxin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Chenghong Liu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Elsayed SSA, Sehsah MD, Oueslati MA, Ibrahim OM, Hamden S, Seddek NH, Abo-Elmagd HI, Alkhalifah DHM, Sheteiwy MS, AbdElgawad H, El-Saadony MT, El-Tahan AM. The effect of using fresh farmyard manure (animal manure) on the severity of Fusarium verticilioides in soil, root, stem, and kernels as well as lodging and borer incidence of maize plants. FRONTIERS IN PLANT SCIENCE 2023; 13:998440. [PMID: 36762184 PMCID: PMC9907084 DOI: 10.3389/fpls.2022.998440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Fusarium verticillioides, an important maize pathogen, produce fumonisins, causes stalk rot and consequentially reduce crop growth and yield. Therefore, herein we aimed to evaluate the potential use of two farmyard soil organic manures, i.e., fresh (5-6 days old) and stored (5-6 months old) organic manure, to manage F. verticillioides infections as well as borer incidence and lodging in maize plants. After 30, 60, and 90 days of sowing, samples of soil, roots, and stems were collected to isolate F. verticillioides. Moreover, we estimated ear and kernel rot induced by F. verticillioides at the final harvest. Fresh organic manure treatment increased infection rates of F. verticillioides in soil, roots, stem and kernels compared to the control treatment. In contrast, stored organic manure plots treatments decrease F. verticillioides frequency. At 90 days after sowing, stored organic manure suppressed the survival of F. verticillioides, which reduced the F. verticillioides incidence percent. These results were similar to the effect of herbicides-and insecticide-treated plots demonstrated, which show a significant decrease in F. verticillioides incidence rates. Mycological analysis on symptomless kernels revealed a higher % of pathogen infection in opened husks variety (Balady) than closed husks variety (SC10). Compared with stored organic manure, the stem borer incidence and lodging percentage were the highest in fresh organic manure plots. Finally, these results demonstrated that storing organic manure within five to six months as farmyard manure led to high-temperature centigrade within organic manure, thereby destroying spores of F. verticillioides, whereas fresh organic manure did not.
Collapse
Affiliation(s)
- Samar S. A. Elsayed
- Maize and Sugar Crops Disease Research Department, Plant Pathology Research Institution, Agricultural Research Center, Giza, Egypt
| | - Mohamed D. Sehsah
- Maize and Sugar Crops Disease Research Department, Plant Pathology Research Institution, Agricultural Research Center, Giza, Egypt
| | - Moufida A. Oueslati
- Deanship of Preparatory Year and Supporting Studies and The Department of Respiratory Care, College of Applied Medical Sciences in al Jubail, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Omar M. Ibrahim
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Salem Hamden
- Department of Agric. Botany (Plant Pathology), Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nermien H. Seddek
- Department of Respiratory Care, College of Applied Medical Sciences-Jubail 4030 (CAMSJ), Imam Abdulrahman Bin Faisal University, Al Jubail, Saudi Arabia
| | - Heba I. Abo-Elmagd
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed S. Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| |
Collapse
|
5
|
Luo F, Yan XJ, Hu XF, Yan LJ, Cao MY, Zhang WJ. Nitrate Quantification in Fresh Vegetables in Shanghai: Its Dietary Risks and Preventive Measures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14487. [PMID: 36361361 PMCID: PMC9658243 DOI: 10.3390/ijerph192114487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
To investigate nitrate and nitrite content in fresh vegetables, 264 samples were randomly collected in the farmers' markets in Shanghai, Southeast China. The results indicate that 25.0% of the fresh vegetables were critically or more contaminated by nitrate [>1440 mg/kg FW (Fresh weight)]. Generally, leafy vegetables were more highly enriched in nitrate than root-tuber and fruit vegetables. About 22.6% of the leafy vegetables had a nitrate content exceeding the limit for edible permission (>3000 mg/kg FW). Nitrite content in the fresh vegetables was all within the safe level (<1 mg/kg FW). It was estimated that the daily nitrate intake through eating vegetables in Shanghai exceeded the WHO/FAO allowable limit. The field experiment indicated that the hyper-accumulation of nitrate and nitrite in the vegetables was mainly attributed to the excessive application of chemical fertilizers. The maxima of nitrate and nitrite in the vegetables were attained one week after applying chemical fertilizer, and thus they cannot be picked for dietary use. Applying organic manure can effectively lower the risk of nitrate and nitrite contamination in vegetables. The old leaves and leaf petioles were more easily enriched in nitrate due to their weaker metabolic activity. Vegetables with high nitrate content had a high risk of nitrite toxicity during storage due to the biological conversion of nitrate into nitrite, which is easily triggered by suitable temperature and mechanical damage processing. Therefore, fresh vegetables should be stored by rapid cooling and in undamaged forms to prevent nitrite accumulation.
Collapse
|