1
|
Halimeh H. Red light induced seed germination and seedling growth by modulating antioxidant defense system, Rubisco, and NADPH oxidase activities in Capsicum frutescens. BMC PLANT BIOLOGY 2025; 25:519. [PMID: 40275137 PMCID: PMC12020111 DOI: 10.1186/s12870-025-06540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
In this study, the impact of light-emitting diodes (LEDs) in different spectrums was investigated on the seed germination and post-germinative performance of Capsicum frutescens seedlings. The seeds were exposed to different LED lights (full spectrum, white, red, blue, and red-blue) for 0, 1, 2, and 4 h (h). The seeds were placed for a week in darkness to investigate germination, and then the growth mechanisms were studied in four-week-old seedlings. Results indicated that germination percentage was promoted markedly under 2 h red and full lights and also in 1 h blue, which was accompanied by the regulation of H2O2 level and NADPH oxidase (NOX) activity. Sprout growth and height were more heightened under 2 h red light, but their contents decreased considerably under blue light with a rising incubation time. Red light induced more biomass yield, chlorophyll (Chl) pigments, Chl a/b ratio and florescence in four-week-old seedlings. Blue light also increased Chl pigments, but decreased biomass yield by enhancing malondialdehyde (MDA) level. Increased growth in seedlings treated to red light was associated with upregulating Rubisco gene expressions (rbcL and rbcS) and its activity. Red and red-blue lights promoted the activity of superoxide dismutase, glutathione reductase, and ascorbate peroxidase enzymes to increase ascorbic acid (ASA) production in the ascorbate-glutathione cycle. Total phenolic (0.22 mg DAG g- 1 DW), ASA (89.58 mg 100 g- 1 FW) and capsaicinoids (2.73 mg g- 1 DW) contents were heightened under red light, while carotenoid (11.78 µg g- 1 FW) content was more accumulated under blue light. The findings of this study suggest red light modulates NOX activity and H2O2 level for inducing seed germination and seedling quality in C. frutescens, which can create important implications for the production of antioxidant metabolites and increase the cultivation area of this plant.
Collapse
Affiliation(s)
- Hassanpour Halimeh
- Aerospace Research Institute, Ministry of Science Research and Technology, Tehran, 14665‑834, Iran.
| |
Collapse
|
2
|
Yang Y, Gao C, Ye Q, Liu C, Wan H, Ruan M, Zhou G, Wang R, Li Z, Diao M, Cheng Y. The Influence of Different Factors on the Metabolism of Capsaicinoids in Pepper ( Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2887. [PMID: 39458834 PMCID: PMC11511365 DOI: 10.3390/plants13202887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Pepper is a globally cultivated vegetable known for its distinct pungent flavor, which is derived from the presence of capsaicinoids, a class of unique secondary metabolites that accumulate specifically in pepper fruits. Since the accumulation of capsaicinoids is influenced by various factors, it is imperative to comprehend the metabolic regulatory mechanisms governing capsaicinoids production. This review offers a thorough examination of the factors that govern the metabolism of capsaicinoids in pepper fruit, with a specific focus on three primary facets: (1) the impact of genotype and developmental stage on capsaicinoids metabolism, (2) the influence of environmental factors on capsaicinoids metabolism, and (3) exogenous substances like methyl jasmonate, chlorophenoxyacetic acid, gibberellic acid, and salicylic acid regulate capsaicinoid metabolism. The findings of this study are expected to enhance comprehension of capsaicinoids metabolism and aid in the improvement of breeding and cultivation practices for high-quality pepper in the future.
Collapse
Affiliation(s)
- Yuanling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
- College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Chengan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
- College of Horticultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Qingjing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Chenxu Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Meiying Ruan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Rongqing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Zhimiao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Ming Diao
- College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| |
Collapse
|
3
|
Islam K, Rawoof A, Kumar A, Momo J, Ahmed I, Dubey M, Ramchiary N. Genetic Regulation, Environmental Cues, and Extraction Methods for Higher Yield of Secondary Metabolites in Capsicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37289974 DOI: 10.1021/acs.jafc.3c01901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Capsicum (chili pepper) is a widely popular and highly consumed fruit crop with beneficial secondary metabolites such as capsaicinoids, carotenoids, flavonoids, and polyphenols, among others. Interestingly, the secondary metabolite profile is a dynamic function of biosynthetic enzymes, regulatory transcription factors, developmental stage, abiotic and biotic environment, and extraction methods. We propose active manipulable genetic, environmental, and extraction controls for the modulation of quality and quantity of desired secondary metabolites in Capsicum species. Specific biosynthetic genes such as Pun (AT3) and AMT in the capsaicinoids pathway and PSY, LCY, and CCS in the carotenoid pathway can be genetically engineered for enhanced production of capsaicinoids and carotenoids, respectively. Generally, secondary metabolites increase with the ripening of the fruit; however, transcriptional regulators such as MYB, bHLH, and ERF control the extent of accumulation in specific tissues. The precise tuning of biotic and abiotic factors such as light, temperature, and chemical elicitors can maximize the accumulation and retention of secondary metabolites in pre- and postharvest settings. Finally, optimized extraction methods such as ultrasonication and supercritical fluid method can lead to a higher yield of secondary metabolites. Together, the integrated understanding of the genetic regulation of biosynthesis, elicitation treatments, and optimization of extraction methods can maximize the industrial production of secondary metabolites in Capsicum.
Collapse
Affiliation(s)
- Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajay Kumar
- Department of Plant Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ilyas Ahmed
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Meenakshi Dubey
- Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
4
|
Elsayed SSA, Sehsah MD, Oueslati MA, Ibrahim OM, Hamden S, Seddek NH, Abo-Elmagd HI, Alkhalifah DHM, Sheteiwy MS, AbdElgawad H, El-Saadony MT, El-Tahan AM. The effect of using fresh farmyard manure (animal manure) on the severity of Fusarium verticilioides in soil, root, stem, and kernels as well as lodging and borer incidence of maize plants. FRONTIERS IN PLANT SCIENCE 2023; 13:998440. [PMID: 36762184 PMCID: PMC9907084 DOI: 10.3389/fpls.2022.998440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Fusarium verticillioides, an important maize pathogen, produce fumonisins, causes stalk rot and consequentially reduce crop growth and yield. Therefore, herein we aimed to evaluate the potential use of two farmyard soil organic manures, i.e., fresh (5-6 days old) and stored (5-6 months old) organic manure, to manage F. verticillioides infections as well as borer incidence and lodging in maize plants. After 30, 60, and 90 days of sowing, samples of soil, roots, and stems were collected to isolate F. verticillioides. Moreover, we estimated ear and kernel rot induced by F. verticillioides at the final harvest. Fresh organic manure treatment increased infection rates of F. verticillioides in soil, roots, stem and kernels compared to the control treatment. In contrast, stored organic manure plots treatments decrease F. verticillioides frequency. At 90 days after sowing, stored organic manure suppressed the survival of F. verticillioides, which reduced the F. verticillioides incidence percent. These results were similar to the effect of herbicides-and insecticide-treated plots demonstrated, which show a significant decrease in F. verticillioides incidence rates. Mycological analysis on symptomless kernels revealed a higher % of pathogen infection in opened husks variety (Balady) than closed husks variety (SC10). Compared with stored organic manure, the stem borer incidence and lodging percentage were the highest in fresh organic manure plots. Finally, these results demonstrated that storing organic manure within five to six months as farmyard manure led to high-temperature centigrade within organic manure, thereby destroying spores of F. verticillioides, whereas fresh organic manure did not.
Collapse
Affiliation(s)
- Samar S. A. Elsayed
- Maize and Sugar Crops Disease Research Department, Plant Pathology Research Institution, Agricultural Research Center, Giza, Egypt
| | - Mohamed D. Sehsah
- Maize and Sugar Crops Disease Research Department, Plant Pathology Research Institution, Agricultural Research Center, Giza, Egypt
| | - Moufida A. Oueslati
- Deanship of Preparatory Year and Supporting Studies and The Department of Respiratory Care, College of Applied Medical Sciences in al Jubail, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Omar M. Ibrahim
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Salem Hamden
- Department of Agric. Botany (Plant Pathology), Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nermien H. Seddek
- Department of Respiratory Care, College of Applied Medical Sciences-Jubail 4030 (CAMSJ), Imam Abdulrahman Bin Faisal University, Al Jubail, Saudi Arabia
| | - Heba I. Abo-Elmagd
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed S. Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| |
Collapse
|