1
|
Ilyas T, Shahid M, Shafi Z, Aijaz SA, Wasiullah. Molecular mechanisms of methyl jasmonate (MeJAs)-mediated detoxification of heavy metals (HMs) in agricultural crops: An interactive review. SOUTH AFRICAN JOURNAL OF BOTANY 2025; 177:139-159. [DOI: 10.1016/j.sajb.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Yetişsin F, Ahneak E. Acetone O-(2-naphthylsulfonyl) oxime alleviates the toxic effects of cadmium in maize seedlings by increasing the phenolic substance content and antioxidant system activity. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-12. [PMID: 39354853 DOI: 10.1080/15226514.2024.2406942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The absorption of cadmium by plants largely depends on cadmium contamination in the soil. The development of phytomining and phytoremediation methods to clean cadmium-contaminated ecosystems is an urgent issue that needs to be solved. Therefore, the role of exogenous O-(2-naphthylsulfonyl)oxime (ANSO) to maize seedlings under cadmium stress was tested. The results showed that when ANSO+cadmium application was compared to cadmium, the cadmium content increased by 7.8 times, while the abscisic acid content decreased. Under cadmium stress, ANSO application did not change the relative water content, but increased the chlorophyll content. While carotenoid content increased with cadmium application, it increased further with ANSO+cadmium application. As a result of the positive effects of ANSO application on the antioxidant system under cadmium stress, hydrogen peroxide content, lipid peroxidation and proline content decreased. ANSO application under cadmium stress increased the phenolic substance content. This study shows that exogenous ANSO makes significant contributions to the protection of maize seedlings despite being under cadmium stress. It also provides important references to the fact that despite stress, the cadmium chelation mechanisms of seedlings continue to work actively to accumulate cadmium in tissues, and it has deep implications for the remediation of cadmium-polluted soils.
Collapse
Affiliation(s)
- Fuat Yetişsin
- Department of Plant and Animal Production, Muş Alparslan University, Muş, Türkiye
| | - Esin Ahneak
- Department of Biology, Muş Alparslan University, Muş, Türkiye
| |
Collapse
|
3
|
Mubeen S, Pan J, Saeed W, Luo D, Rehman M, Hui Z, Chen P. Exogenous methyl jasmonate enhanced kenaf (Hibiscus cannabinus) tolerance against lead (Pb) toxicity by improving antioxidant capacity and osmoregulators. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30806-30818. [PMID: 38613757 DOI: 10.1007/s11356-024-33189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
In this study, the effects of exogenous methyl jasmonate (MeJA) on metal uptake and its ability to attenuate metal toxicity in kenaf plants under Pb stress were investigated. The experiment was conducted with five different MeJA concentrations (0, 40, 80, 160, and 320 μM) as a foilar application to kenaf plants exposed to 200 μM Pb stress. The results revealed that pretreatmen of MeJA significantly increased plant dry weight, plant height, and root architecture at all concentrations tested, with the most significant increase at 320 μM. Foliar application of MeJA at 160 μM and 320 μM increased the Pb concentrations in leaves and stems as well as the translocation factor (TF) from root to leaf. However, the bioaccumulation factor in the shoot initially decreased and then increased with increasing MeJA concentration. By increasing enzymatic (SOD, POD, and CAT) and non-enzymatic (AsA and non-protein thiols) antioxidants, MeJA pretreatment decreased lipid peroxidation, O2- and H2O2 accumulation and recovered photosynthetic pigment content under Pb stress. Increased osmolytes (proline, sugar, and starch) and protein content after MeJA pretreatment under Pb stress restore cellular homeostasis and improved kenaf tolerance. Our results suggest that MeJA pretreatment modifies the antioxidant machinery of kenaf and inhibits stress-related processes that cause lipid peroxidation, hence enhancing plant tolerance to Pb stress.
Collapse
Affiliation(s)
- Samavia Mubeen
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jiao Pan
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Wajid Saeed
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Dengjie Luo
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Muzammal Rehman
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Zhang Hui
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Peng Chen
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
4
|
Kamali S, Iranbakhsh A, Ebadi M, Oraghi Ardebili Z, Haghighat S. Methyl jasmonate conferred Arsenic tolerance in Thymus kotschyanus by DNA hypomethylation, stimulating terpenoid metabolism, and upregulating two cytochrome P450 monooxygenases. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133163. [PMID: 38064945 DOI: 10.1016/j.jhazmat.2023.133163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024]
Abstract
Arsenic (As) is a highly cytotoxic element impairing normal cellular functions, and its bioremediation has become one of the environmental concerns. This study explored the molecular and physiological responses of thyme (Thymus kotschyanus) seedlings to incorporating As (0 and 10 mgl-1) and methyl jasmonate (MJ; 0 and 10 µM) into the culture medium. The MJ treatment reinforced root system and mitigated the As cytotoxicity risk. MJ contributed to hypomethylation, a potential adaptation mechanism for conferring the As tolerance. Two cytochrome P450 monooxygenases, including CYP71D178 and CYP71D180 genes, were upregulated in response to As and MJ. The MJ treatment contributed to up-regulation in the γ-terpinene synthase (TPS) gene, a marker gene in the terpenoid metabolism. The As presence reduced photosynthetic pigments (chlorophylls and carotenoids), while the MJ utilization alleviated the As toxicity. The MJ supplementation increased proline accumulation and soluble phenols. The application of MJ declined the toxicity sign of As on the concentration of proteins. The activities of peroxidase, catalase, and phenylalanine ammonia-lyase (PAL) enzymes displayed an upward trend in response to As and MJ treatments. Taken collective, MJ can confer the As tolerance by triggering DNA hypomethylation, regulating CYPs, and stimulating primary and secondary metabolism, especially terpenoid.
Collapse
Affiliation(s)
- Soheila Kamali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | - Setareh Haghighat
- Department of Microbiology, Faculty of advanced sciences and technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Tőzsér D, Idehen DO, Osazuwa JD, Sule JE, Ragyák ÁZ, Sajtos Z, Magura T. Early-stage growth and elemental composition patterns of Brassica napus L. in response to Cd-Zn contamination. CHEMOSPHERE 2024; 351:141235. [PMID: 38237783 DOI: 10.1016/j.chemosphere.2024.141235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Soil contamination caused by the presence of Cd and the excess amount of Zn is a widespread concern in agricultural areas, posing significant risks to the growth and development of crops. In this paper, the early-stage development and metal (Cd and Zn) accumulation potential of rapeseed (Brassica napus L.) grown under different metal application schemes were assessed by determining radicle and hypocotyl length and the micro- and macro elemental composition of plantlets after 24, 72, and 120 h. The results indicated that the single and co-application of Cd and Zn significantly reduced the radicle and hypocotyl lengths. Accumulation intensity for Cd and Zn was affected by Cd and the combination of Cd and Zn in the solution, respectively. In addition, both metals significantly influenced the tissue Mn and had a minor effect on Cu and Fe concentrations. Both Cd and Zn significantly affected macro element concentrations by decreasing tissue Ca and influencing K and Mg concentrations in a dose- and exposure time-dependent manner. These findings specify the short-term and support the long-term use of rapeseed in remediation processes. However, interactions of metals are crucial in determining the concentration patterns in tissues, which deserves more attention in future investigations.
Collapse
Affiliation(s)
- Dávid Tőzsér
- Department of Ecology, University of Debrecen, H-4032, Debrecen, Hungary; Circular Economy Analysis Center, Hungarian University of Agriculture and Life Sciences, H-2100, Gödöllő, Hungary
| | | | | | - John Elias Sule
- Department of Ecology, University of Debrecen, H-4032, Debrecen, Hungary
| | - Ágota Zsófia Ragyák
- Department of Inorganic and Analytical Chemistry, Agilent Atomic Spectroscopy Partner Laboratory, University of Debrecen, H-4032, Debrecen, Hungary
| | - Zsófi Sajtos
- Department of Inorganic and Analytical Chemistry, Agilent Atomic Spectroscopy Partner Laboratory, University of Debrecen, H-4032, Debrecen, Hungary.
| | - Tibor Magura
- Department of Ecology, University of Debrecen, H-4032, Debrecen, Hungary; HUN-REN-UD Anthropocene Ecology Research Group, University of Debrecen, H-4032, Debrecen, Hungary
| |
Collapse
|
6
|
Wu L, Wang R, Li M, Du Z, Jin Y, Shi Y, Jiang W, Chen J, Jiao Y, Hu B, Huang J. Functional analysis of a rice 12-oxo-phytodienoic acid reductase gene (OsOPR1) involved in Cd stress tolerance. Mol Biol Rep 2024; 51:198. [PMID: 38270739 DOI: 10.1007/s11033-023-09159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND The accumulation of cadmium (Cd) in plants may compromise the growth and development of plants, thereby endangering human health through the food chain. Understanding how plants respond to Cd is important for breeding low-Cd rice cultivars. METHODS In this study, the functions of 12-oxo-phytodienoic acid reductase 1 (OsOPR1) were predicted through bioinformatics analysis. The expression levels of OsOPR1 under Cd stress were analyzed by using qRT-PCR. Then, the role that OsOPR1 gene plays in Cd tolerance was studied in Cd-sensitive yeast strain (ycf1), and the Cd concentration of transgenic yeast was analyzed using inductively coupled plasma mass spectrometry (ICP-MS). RESULTS Bioinformatics analysis revealed that OsOPR1 was a protein with an Old yellow enzyme-like FMN (OYE_like_FMN) domain, and the cis-acting elements which regulate hormone synthesis or responding abiotic stress were abundant in the promoter region, which suggested that OsOPR1 may exhibit multifaceted biological functions. The expression pattern analysis showed that the expression levels of OsOPR1 were induced by Cd stress both in roots and roots of rice plants. However, the induced expression of OsOPR1 by Cd was more significant in the roots compared to that in roots. In addition, the overexpression of OsOPR1 improved the Cd tolerance of yeast cells by affecting the expression of antioxidant enzyme related genes and reducing Cd content in yeast cells. CONCLUSION Overall, these results suggested that OsOPR1 is a Cd-responsive gene and may has a potential for breeding low-Cd or Cd-tolerant rice cultivars and for phytoremediation of Cd-contaminated in farmland.
Collapse
Affiliation(s)
- Longying Wu
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Ruolin Wang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Mingyu Li
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Zhiye Du
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Yufan Jin
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Yang Shi
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Wenjun Jiang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Sichuan, 611130, China.
| | - Yuan Jiao
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Binhua Hu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Sichuan, 610066, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China.
| |
Collapse
|
7
|
Zou X, Zhang J, Cheng T, Guo Y, Zhang L, Han X, Liu C, Wan Y, Ye X, Cao X, Song C, Zhao G, Xiang D. New strategies to address world food security and elimination of malnutrition: future role of coarse cereals in human health. FRONTIERS IN PLANT SCIENCE 2023; 14:1301445. [PMID: 38107010 PMCID: PMC10722300 DOI: 10.3389/fpls.2023.1301445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
As we face increasing challenges of world food security and malnutrition, coarse cereals are coming into favor as an important supplement to human staple foods due to their high nutritional value. In addition, their functional components, such as flavonoids and polyphenols, make them an important food source for healthy diets. However, we lack a systematic understanding of the importance of coarse cereals for world food security and nutritional goals. This review summarizes the worldwide cultivation and distribution of coarse cereals, indicating that the global area for coarse cereal cultivation is steadily increasing. This paper also focuses on the special adaptive mechanisms of coarse cereals to drought and discusses the strategies to improve coarse cereal crop yields from the perspective of agricultural production systems. The future possibilities, challenges, and opportunities for coarse cereal production are summarized in the face of food security challenges, and new ideas for world coarse cereal production are suggested.
Collapse
Affiliation(s)
- Xin Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jieyu Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Cheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yangyang Guo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Li Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiao Han
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoning Cao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, China
| | - Chao Song
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
8
|
Ali M, Kumar D, Tikoria R, Sharma R, Parkirti P, Vikram V, Kaushal K, Ohri P. Exploring the potential role of hydrogen sulfide and jasmonic acid in plants during heavy metal stress. Nitric Oxide 2023; 140-141:16-29. [PMID: 37696445 DOI: 10.1016/j.niox.2023.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
In plants, hydrogen sulfide (H2S) is mainly considered as a gaseous transmitter or signaling molecule that has long been recognized as an essential component of numerous plant cellular and physiological processes. Several subcellular compartments in plants use both enzymatic and non-enzymatic mechanisms to generate H2S. Under normal and stress full conditions exogenous administration of H2S supports a variety of plant developmental processes, including growth and germination, senescence, defense, maturation and antioxidant machinery in plants. Due to their gaseous nature, they are efficiently disseminated to various areas of the cell to balance antioxidant pools and supply sulphur to the cells. Numerous studies have also been reported regarding H2S ability to reduce heavy metal toxicity when combined with other signaling molecules like nitric oxide (NO), abscisic acid (ABA), calcium ion (Ca2+), hydrogen peroxide (H2O2), salicylic acid (SA), ethylene (ETH), jasmonic acid (JA), proline (Pro), and melatonin. The current study focuses on multiple pathways for JA and H2S production as well as their signaling functions in plant cells under varied circumstances, more specifically under heavy metal, which also covers role of H2S and Jasmonic acid during heavy metal stress and interaction of hydrogen sulfide with Jasmonic acid.
Collapse
Affiliation(s)
- Mohd Ali
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Raman Tikoria
- Department of Zoology, School of Bioengineering and Bioscience, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Roohi Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Parkirti Parkirti
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Vikram Vikram
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kritika Kaushal
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
9
|
Feng D, Wang R, Sun X, Liu L, Liu P, Tang J, Zhang C, Liu H. Heavy metal stress in plants: Ways to alleviate with exogenous substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165397. [PMID: 37429478 DOI: 10.1016/j.scitotenv.2023.165397] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Accumulation and enrichment of excessive heavy metals due to industrialization and modernization not only devastate our ecosystem, but also pose a threat to the global vegetation, especially crops. To improve plant resilience against heavy metal stress (HMS), numerous exogenous substances (ESs) have been tried as the alleviating agents. After a careful and thorough review of over 150 recently published literature, 93 reported ESs and their corresponding effects on alleviating HMS, we propose that 7 underlying mechanisms of ESs be categorized in plants for: 1) improving the capacity of the antioxidant system, 2) inducing the synthesis of osmoregulatory substances, 3) enhancing the photochemical system, 4) detouring the accumulation and migration of heavy metals, 5) regulating the secretion of endogenous hormones, 6) modulating gene expressions, and 7) participating in microbe-involved regulations. Recent research advances strongly indicate that ESs have proven to be effective in mitigating a potential negative impact of HMS on crops and other plants, but not enough to ultimately solve the devastating problem associated with excessive heavy metals. Therefore, much more research should be focused and carried out to eliminate HMS for the sustainable agriculture and clean environmental through minimizing towards prohibiting heavy metals from entering our ecosystem, phytodetoxicating polluted landscapes, retrieving heavy metals from detoxicating plants or crop, breeding for more tolerant cultivars for both high yield and tolerance against HMS, and seeking synergetic effect of multiply ESs on HMS alleviation in our feature researches.
Collapse
Affiliation(s)
- Di Feng
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Rongxue Wang
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Xiaoan Sun
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Li'nan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ping Liu
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chenxi Zhang
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China.
| | - Hao Liu
- Key Laboratory of Crop Water Requirement and Regulation of the Ministry of Agriculture and Rural Affairs/Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453003, Henan, China.
| |
Collapse
|
10
|
Umair M, Zafar SH, Cheema M, Minhas R, Saeed AM, Saqib M, Aslam M. Unraveling the effects of zinc sulfate nanoparticles and potassium fertilizers on quality of maize and associated health risks in Cd contaminated soils under different moisture regimes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165147. [PMID: 37392879 DOI: 10.1016/j.scitotenv.2023.165147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
This study investigated the interactive effects of zinc sulfate nanoparticles (ZnSO4 NPs) and potassium fertilizers (SOP and MOP) on growth and quality of maize (Zea mays L.) under different moisture regimes in cadmium contaminated soils. It seeks to identify how these two different sources of nutrients interact to improve the quality of maize grains and fodder production to ensure food safety and food security under abiotic stresses. The experiment was conducted in a greenhouse under two moisture regimes including M1 (non-limiting regime, 20-30 %) and M2 (water-limiting, 10-15 %) at Cd contamination of 20 mg kg-1. The results showed that ZnSO4 NPs combined with potassium fertilizers significantly increased the growth and proximate composition of maize in Cd contaminated soil. Moreover, applied amendments significantly alleviated the stress induced in maize by improving the growth. The greatest increase in maize growth and quality was observed when ZnSO4 NPs were applied in combination with SOP (K2SO4). The results also showed that the interactive effects of ZnSO4 NPs and potassium fertilizers significantly affected the Cd bioavailability in soil and concentration in plants. It was observed that MOP (KCl) enhanced the Cd bioavailability in soil due to presence of Cl anion. In addition, the application of ZnSO4 NPs combined with SOP fertilizer reduced the concentration of Cd in maize grain and shoot, and significantly reduced the probable health risks to humans and cattle. It suggested that this strategy could help to reduce Cd exposure through food consumption and therefore ensure food safety. Our findings suggest that ZnSO4 NPs and SOP can be used synergistically to improve maize crop production and development of agricultural practices in areas affected by Cd contamination. Moreover, by understanding the interactive effects of these two sources of nutrients, this research could help in the management of areas affected by heavy metals contamination. ENVIRONMENTAL IMPLICATION: The application of zinc and potassium fertilizers can increase the biomass of maize, minimize abiotic stresses, and improve the nutritional value of the crop in Cd contaminated soils; this is particularly true when zinc sulfate nanoparticles and sulfate of potash (K2SO4) are used in conjunction. This form of fertilizer management can lead to a greater, more sustainable yield of maize under contaminated soils, which could have a major impact on global food supply. Remediation coupled with agro-production (RCA) not only improves the effectiveness of the process but will also encourage farmers to take part in soil remediation by easy management.
Collapse
Affiliation(s)
- Muhammad Umair
- Agricultural Research Station, Bahawalpur 63100, Punjab, Pakistan; Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Punjab, Pakistan.
| | - Sehrish Huma Zafar
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Punjab, Pakistan
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook A2H 5G4, Newfoundland, Canada
| | - Rashid Minhas
- Agricultural Research Station, Bahawalpur 63100, Punjab, Pakistan
| | - Abdul Manan Saeed
- Soil and Water Testing Laboratory for Research, Gujranwala, Punjab, Pakistan
| | - Muhammad Saqib
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Punjab, Pakistan.
| | | |
Collapse
|
11
|
Waheed A, Haxim Y, Kahar G, Islam W, Ahmad M, Khan KA, Ghramh HA, Alqahtani FM, Hashemand M, Daoyuan Z. Jasmonic acid boosts the salt tolerance of kidney beans (Phaseolus vulgaris L.) by upregulating its osmolytes and antioxidant mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91237-91246. [PMID: 37474859 DOI: 10.1007/s11356-023-28632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/02/2023] [Indexed: 07/22/2023]
Abstract
As a lipid-derived compound, jasmonic acid (JA) regulates growth and defense against environmental stresses. An exogenous foliar JA application was investigated in our study (HA; 0.5 mM) on kidney bean plants (Phaseolus vulgaris L.) grown under different salinity stress concentrations (0, 75, and 150 mM NaCl). According to the results, salt concentrations were related to an increase in malondialdehyde (MDA) levels, whereas they declined the chlorophyll content index. In contrast, JA application decreased the level of MDA but increased the chlorophyll content index. Moreover, increasing salinity levels increased proline, phenolic compounds, flavonoids, free amino acid concentrations, and shikimic acid concentrations, as well as the activities of polyphenol oxidase (PPO), ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD). In addition, JA applications further increased their concentrations with increasing salinity stress levels. JA application increases salt-induced osmolytes and non-enzymatic antioxidants while increasing enzymatic antioxidant activity, suggesting kidney beans have a strong antioxidant mechanism, which can adapt to salinity stress. Our results showed that exogenous JA foliar applications could enhance the salt tolerance ability of kidney bean plants by upregulating their antioxidant mechanism and osmolytes.
Collapse
Affiliation(s)
- Abdul Waheed
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Yakupjan Haxim
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Gulnaz Kahar
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Waqar Islam
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Mushtaq Ahmad
- Department of Zoology, Islamia College University, Peshawar, 24420, Pakistan
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Applied College, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A Ghramh
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia
| | - Fatmah M Alqahtani
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohamed Hashemand
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Zhang Daoyuan
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
12
|
Al-Huqail AA. Effect of jasmonic acid on the phytoremediation of dinitrophenol from wastewater by Solanum nigrum L. and Atriplex lentiformis (Torr.) S. Watson. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80144-80153. [PMID: 37296250 DOI: 10.1007/s11356-023-28148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Phytoremediation is one of the best methods for cleaning up natural resources like water because plants are eco-friendly and safe for the ecosystem. Hyperaccumulators, e.g., Solanum nigrum L. and Atriplex lentiformis (Torr.) S. Watson, have been used to remove toxic metals from soil and water through phytoremediation techniques, but it is unknown if they can remove hazardous chemicals such as dinitrophenol (DNP), from wastewater. A hydroponic experiment was conducted to study the efficiency of S. nigrum and A. lentiformis in removing DNP from wastewater. Jasmonic acid (JAC) was applied to the tested plants in two doses, 0.25 and 0.50 mmol, in an effort to better understand how it affects phytoremediation effectiveness. The growth of S. nigrum and A. lentiformis improved significantly (p < 0.05) by the foliar application of JAC. The applications of JAC1 and JAC2 significantly (p < 0.05) increased nutrient uptake and chlorophyll concentrations in S. nigrum and A. lentiformis plants. The foliar spraying of S. nigrum and A. lentiformis with JAC significantly (p < 0.05) increased the antioxidant enzymes activity, i.e., SOD and POD. The levels of osmoregulatory substances like proline and carbohydrates significantly (p < 0.05) increased after JAC was sprayed on S. nigrum and A. lentiformis plants. In the case of S. nigrum, the efficiency of DNP removal varied between 53 and 69%, with an average of 63%, while in the case of A. lentiformis, it varied between 47 and 62%, with an average of 56%. The removal efficiency of DNP reached 67 and 69% when S. nigrum was sprayed with JAC1 and JAC2. When JAC1 and JAC2 were sprayed on A. lentiformis, DNP removal efficiency rose from 47 to 60 and from 47 to 62%, respectively. S. nigrum and A. lentiformis plants can be grown normally and survive in dinitrophenol-contaminated water without showing any toxic symptoms. S. nigrum and A. lentiformis have a powerful antioxidant system and the ability to produce vital compounds that alleviate the stress caused by DNP toxicity. The findings are crucial for cleaning up polluted water and protecting the ecosystem's health from dangerous pollutants.
Collapse
Affiliation(s)
- Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.
| |
Collapse
|
13
|
Repkina N, Murzina SA, Voronin VP, Kaznina N. Does Methyl Jasmonate Effectively Protect Plants under Heavy Metal Contamination? Fatty Acid Content in Wheat Leaves Exposed to Cadmium with or without Exogenous Methyl Jasmonate Application. Biomolecules 2023; 13:biom13040582. [PMID: 37189330 DOI: 10.3390/biom13040582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 05/17/2023] Open
Abstract
The effect of methyl jasmonate (MJ) (1 µM) on wheat (Triticum aestivum L. cv. Moskovskaya 39), seedlings and the fatty acid (FA) content of leaves under optimal and cadmium (Cd) (100 µM) stress conditions wasinvestigated. Height and biomass accumulation was studied traditionally; the netphotosynthesis rate (Pn) was studied using a photosynthesis system, FAs'profile-GS-MS. No effect on the height and Pn rate of the MJ pre-treatment wheat at optimum growth conditions was found. MJ pre-treatment led to a decrease in the total amount of saturated (about 11%) and unsaturated (about 17%) identified FAs, except α-linoleic FA (ALA), which is probably associated with its involvement in energy-dependent processes. Under Cd impact, the MJ-treated plants had a higher biomass accumulation and Pn rate compared to untreated seedlings. Both MJ and Cd caused stress-induced elevation of palmitic acid (PA) versus an absence of myristic acid (MA), which is used for elongation. It is suggested that PA participates in alternative adaptation mechanisms (not only as a constituent of the lipid bilayer of biomembrane) of plants under stress. Overall, the dynamics of FAs showed an increase in the saturated FA that is important in the packing of the biomembrane. It is supposed that the positive effect of MJ is associated with lower Cd content in plants and a higher ALA content in leaves.
Collapse
Affiliation(s)
- Natalia Repkina
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), Petrozavodsk 185910, Russia
| | - Svetlana A Murzina
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), Petrozavodsk 185910, Russia
| | - Viktor P Voronin
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), Petrozavodsk 185910, Russia
| | - Natalia Kaznina
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), Petrozavodsk 185910, Russia
| |
Collapse
|
14
|
Raza A, Salehi H, Rahman MA, Zahid Z, Madadkar Haghjou M, Najafi-Kakavand S, Charagh S, Osman HS, Albaqami M, Zhuang Y, Siddique KHM, Zhuang W. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:961872. [PMID: 36176673 PMCID: PMC9514553 DOI: 10.3389/fpls.2022.961872] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/03/2022] [Indexed: 05/24/2023]
Abstract
Due to global climate change, abiotic stresses are affecting plant growth, productivity, and the quality of cultivated crops. Stressful conditions disrupt physiological activities and suppress defensive mechanisms, resulting in stress-sensitive plants. Consequently, plants implement various endogenous strategies, including plant hormone biosynthesis (e.g., abscisic acid, jasmonic acid, salicylic acid, brassinosteroids, indole-3-acetic acid, cytokinins, ethylene, gibberellic acid, and strigolactones) to withstand stress conditions. Combined or single abiotic stress disrupts the normal transportation of solutes, causes electron leakage, and triggers reactive oxygen species (ROS) production, creating oxidative stress in plants. Several enzymatic and non-enzymatic defense systems marshal a plant's antioxidant defenses. While stress responses and the protective role of the antioxidant defense system have been well-documented in recent investigations, the interrelationships among plant hormones, plant neurotransmitters (NTs, such as serotonin, melatonin, dopamine, acetylcholine, and γ-aminobutyric acid), and antioxidant defenses are not well explained. Thus, this review discusses recent advances in plant hormones, transgenic and metabolic developments, and the potential interaction of plant hormones with NTs in plant stress response and tolerance mechanisms. Furthermore, we discuss current challenges and future directions (transgenic breeding and genome editing) for metabolic improvement in plants using modern molecular tools. The interaction of plant hormones and NTs involved in regulating antioxidant defense systems, molecular hormone networks, and abiotic-induced oxidative stress tolerance in plants are also discussed.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hajar Salehi
- Laboratory of Plant Cell Biology, Department of Biology, Bu-Ali Sina University, Hamedan, Iran
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Zainab Zahid
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maryam Madadkar Haghjou
- Department of Biology, Plant Physiology, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Shiva Najafi-Kakavand
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Hany S. Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yuhui Zhuang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|