1
|
Yi D, Wang Z, Peng M. Comprehensive Review of Perilla frutescens: Chemical Composition, Pharmacological Mechanisms, and Industrial Applications in Food and Health Products. Foods 2025; 14:1252. [PMID: 40238536 PMCID: PMC11988686 DOI: 10.3390/foods14071252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Perilla frutescens (L.) Britt., a multifunctional herbaceous plant, is widely used in traditional medicine and cuisine due to its rich array of bioactive compounds. To date, many key phytochemicals in P. frutescens have been identified, including volatile terpenoids (perillaldehyde, limonene,), flavonoids (luteolin, apigenin), and phenolic acids (rosmarinic acid derivatives), which exhibit significant antioxidant, anti-inflammatory, antiviral, anticancer, antibacterial, and blood sugar-lowering effects. Studies have shown that volatile oils, flavonoids, and phenolic acids in P. frutescens exert their effects in various experimental models. In food and industrial applications, P. frutescens shows innovative potential in functional foods, natural preservatives, and novel food additives, effectively extending food shelf life and providing antimicrobial protection. Moreover, research on the biology and genetic improvement of P. frutescens has provided new approaches to enhance its yield and bioactive content. Finally, this paper also discusses the safety and standardization issues of the plant, providing theoretical support for its widespread application.
Collapse
Affiliation(s)
| | | | - Mu Peng
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (D.Y.); (Z.W.)
| |
Collapse
|
2
|
Xie J, Xiong S, Li Y, Xia B, Li M, Zhang Z, Shi Z, Peng Q, Li C, Lin L, Liao D. Phenolic acids from medicinal and edible homologous plants: a potential anti-inflammatory agent for inflammatory diseases. Front Immunol 2024; 15:1345002. [PMID: 38975345 PMCID: PMC11224438 DOI: 10.3389/fimmu.2024.1345002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Inflammation has been shown to trigger a wide range of chronic diseases, particularly inflammatory diseases. As a result, the focus of research has been on anti-inflammatory drugs and foods. In recent years, the field of medicinal and edible homology (MEH) has developed rapidly in both medical and food sciences, with 95% of MEH being associated with plants. Phenolic acids are a crucial group of natural bioactive substances found in medicinal and edible homologous plants (MEHPs). Their anti-inflammatory activity is significant as they play a vital role in treating several inflammatory diseases. These compounds possess enormous potential for developing anti-inflammatory drugs and functional foods. However, their development is far from satisfactory due to their diverse structure and intricate anti-inflammatory mechanisms. In this review, we summarize the various types, structures, and distribution of MEHP phenolic acids that have been identified as of 2023. We also analyze their anti-inflammatory activity and molecular mechanisms in inflammatory diseases through NF-κB, MAPK, NLRP3, Nrf2, TLRs, and IL-17 pathways. Additionally, we investigate their impact on regulating the composition of the gut microbiota and immune responses. This analysis lays the groundwork for further exploration of the anti-inflammatory structure-activity relationship of MEHP phenolic acids, aiming to inspire structural optimization and deepen our understanding of their mechanism, and provides valuable insights for future research and development in this field.
Collapse
Affiliation(s)
- Jingchen Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Suhui Xiong
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yamei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Minjie Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qiuxian Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Zhu L, Guan L, Wang K, Ren C, Gao Y, Li J, Yan S, Zhang X, Yao X, Zhou Y, Li B, Lu S. Recent trends in extraction, purification, structural characterization, and biological activities evaluation of Perilla frutescens (L.) Britton polysaccharide. Front Nutr 2024; 11:1359813. [PMID: 38585610 PMCID: PMC10995927 DOI: 10.3389/fnut.2024.1359813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/13/2024] [Indexed: 04/09/2024] Open
Abstract
Perilla frutescens (L.) Britton is an annual herb plant of the Perilla genus in the Labiatae family, which is commonly utilized as an edible and medicinal resource. Polysaccharides are among the major components and essential bioactive compounds of P. frutescens, which exhibit a multitude of biological activities, including antioxidant, antitumor, anti-fatigue, immunoregulation, hepatoprotective, anti-inflammatory, and lipid-lowering effects. As a natural carbohydrate, P. frutescens polysaccharide has the potential to be utilized in the development of drugs and functional materials. In this paper, we provide an overview of progress made on the extraction, purification, structural characterization, and bioactivity of polysaccharides from different parts of P. frutescens. The challenges and opportunities for research are discussed, along with the potential development prospects and future areas of focus in the study of P. frutescens polysaccharides.
Collapse
Affiliation(s)
- Ling Zhu
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Lijun Guan
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Kunlun Wang
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Chuanying Ren
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Yang Gao
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Jialei Li
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Song Yan
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Xindi Zhang
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Xinmiao Yao
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Ye Zhou
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Bo Li
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Shuwen Lu
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| |
Collapse
|
4
|
Jesus EGD, Souza FFD, Andrade JV, Andrade E Silva ML, Cunha WR, Ramos RC, Campos OS, Santos JAN, Santos MFC. In silico and in vitro elastase inhibition assessment assays of rosmarinic acid natural product from Rosmarinus officinalis Linn. Nat Prod Res 2024; 38:879-884. [PMID: 37004998 DOI: 10.1080/14786419.2023.2196077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
The use of various herbs and their compounds has been a strategy widely used in the fight against various human diseases. For example, rosmarinic acid, a bioactive phenolic compound commonly found in Rosemary plants (Rosmarinus officinalis Labiatae), has multiple therapeutic benefits in different diseases, such as cancer. Therefore, the study aimed to evaluate in silico and in vitro the inhibition potential of the enzyme Elastase from the porcine pancreas by rosmarinic acid isolated from the plant species R. officinalis Linn. Through Molecular Docking, the mechanism of action was investigated. In addition, rosmarinic acid presented a range of 5-60 µg/mL and significantly inhibited Elastase. At 60 µg/mL, there was an inhibition of 55% on the enzymatic activity. The results demonstrate the inhibition of Elastase by rosmarinic acid, which can lead to the development of new enzyme inhibitors that can be an inspiration for developing various drugs, including anticancer drugs.
Collapse
Affiliation(s)
- Ester Gonçalves de Jesus
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - Fernanda Fernandes de Souza
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - João Victor Andrade
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| | | | - Wilson R Cunha
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Rafael Corrêa Ramos
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Othon Souto Campos
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - Jorge Alexandre Nogueira Santos
- Departamento de Bioquímica, Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, Minas Gerais, Brazil
| | - Mario F C Santos
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| |
Collapse
|
5
|
Jiang Z, Zhou P, Shao Y, Zhang Q, Yue W, Qu C, Wu Q. Applying quantitative spatial phenotypes analysis to the investigation of peltate glandular trichomes development pattern in Perilla frutescens. PLANT METHODS 2023; 19:88. [PMID: 37626389 PMCID: PMC10464211 DOI: 10.1186/s13007-023-01072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Glandular trichomes, often referred to as "phytochemical factories", plays a crucial role in plant growth and metabolism. As the site for secretion and storage, the development of glandular trichomes is related to the dynamic biosynthesis of specialised metabolites. The study aims to explore the relationship between spatial phenotype and dynamic metabolism of glandular trichomes, and establish a novel approach for the exploration and study of the regulatory mechanism governing the development of glandular trichomes. RESULTS In this study, we proposed a technical route based on the relative deviation value to distinguish the peltate glandular trichomes (PGTs) from the background tissues and extract their spatial phenotype. By defining glandular trichome developmental stages based on the leaf vein growth axis, we found that young PGTs were densely distributed near the proximal end of growth axis of the leaf veins, where perillaketone, a primary metabolite of PGTs, is predominantly accumulated. Conversely, mature PGTs are typically found near the distal end of the mid-vein growth axis and the lateral end of the secondary vein growth axis, where the accumulation rate of isoegomaketone and egomaketone exceeds that of perillaketone in PGTs. We further identified spatial phenotypic parameters, Lsum and d, as independent variables to construct a linear regression model that illustrates the relationship between the spatial phenotypes and metabolite content of PGTs, including perillaketone (R2 = 0.698), egomaketone (R2 = 0.593), isoegomaketone (R2 = 0.662) and the sum of the amount (R2 = 0.773). CONCLUSIONS This model proved that the development of PGTs was correlated with the growth of the entire leaf, and the development stage of PGTs can be identifined by spatial phenotypes based on the leaf veins. In conclusion, the findings of this study enhance our understanding of correlation between spatial phenotype and development of glandular trichomes and offer a new approach to explore and study the regulatory mechanism of glandular trichome development.
Collapse
Affiliation(s)
- Zheng Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Peina Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongfang Shao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qianqian Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Yue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cheng Qu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qinan Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China.
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Kim N, Kim SY, Kim SW, Lee JM, Kim SK, Park MH, Kim KH, Oh M, Son CG, Jung IC, Lee EJ. Efficacy of Perilla frutescens (L.) Britton var. frutescens extract on mild knee joint pain: A randomized controlled trial. Front Pharmacol 2023; 14:1114410. [PMID: 36998613 PMCID: PMC10043449 DOI: 10.3389/fphar.2023.1114410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Objectives: This study aimed to evaluate the clinical efficacy and safety of PE extracts developed for the purpose of relieving pain and improving knee joint function on semi-healthy people with mild knee joint pain. Methods: A randomized, double-blind, two-arm, single-center, placebo-controlled clinical trial was conducted. Individuals with knee joint pain and a visual analogue scale (VAS) score < 50 mm were included in the study, and participants with radiological arthritis were excluded. Participants were administered either PFE or a placebo capsule (700 mg, twice a day) orally for eight weeks. The comparisons of the changed VAS score and Western Ontario and McMaster Universities Osteoarthritis (WOMAC) scores between the PFE and placebo groups were primary outcomes, while the five inflammation-related laboratory tests including cartilage oligomeric matrix protein, cyclooxygenase-2, neutrophil and lymphocyte ratio, high sensitive C-reactive protein, and erythrocyte sedimentation rate were secondary outcomes. Also, a safety assessment was done. Results: Eighty participants (mean age, 38.4 ± 14.0, male: female, 28:52) were enrolled; 75 completed the trial (PFE 36 and placebo 39). After eight weeks, both VAS and WOMAC scores were reduced in the PFE and placebo groups. The changed scores were significantly higher in the PFE group compared to the placebo group: 19.6 ± 10.9 vs. 6.8 ± 10.5; VAS scores (p < 0.001), and 20.5 ± 14.7 vs. 9.3 ± 16.5; total WOMAC scores (p < 0.01) including the sub-scores for pain, stiffness, and functions. No significant changes were reported in the five inflammation-related laboratory parameters. All adverse events were considered minor and unlikely to result from the intervention. Conclusion: Eight weeks of PFE intake was more effective than placebo in reducing knee joint pain and improving knee joint function in sub-healthy people with mild knee joint pain, and there were no major safety concerns. Clinical Trial Registration: https://cris.nih.go.kr/cris/search/detailSearch.do?search_lang=E&focus=reset_12&search_page=M&pageSize=10&page=undefined&seq=23101&status=5&seq_group=19745, identifier CRIS: KCT0007219.
Collapse
Affiliation(s)
- NamHoon Kim
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Si-Yeon Kim
- Clinical Trial Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Sang-Woo Kim
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Jung Min Lee
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | | | | | - Ki-Hwan Kim
- SFC Bio Co., Ltd, Cheonan-si, Republic of Korea
| | - Minseok Oh
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Chang-Gue Son
- Institute of Bioscience and Integrative Medicine, Department of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - In Chul Jung
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Eun-Jung Lee
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Wang R, Zhang Q, Feng C, Zhang J, Qin Y, Meng L. Advances in the Pharmacological Activities and Effects of Perilla Ketone and Isoegomaketone. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8809792. [PMID: 36337585 PMCID: PMC9635969 DOI: 10.1155/2022/8809792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
Abstract
As components of a traditional Chinese herbal medicine with many physiological activities, perilla ketone and isoegomaketone isolated from perilla essential oil are important active components of Perilla frutescens. Recent studies have shown that these two compounds have promising antitumor, antifungal, antirheumatoid arthritis, antiobesity, anti-inflammatory, healing-promoting, and other activities and can be used to combat toxicity from immunotherapy. Therefore, the multitude of pharmacological activities and effects demonstrate the broad research potential of perilla ketone and isoegomaketone. However, no reviews have been published related to the pharmacological activities or effects of perilla ketone and isoegomaketone. The purpose of this review is as follows: (1) outline the recent advances made in understanding the pharmacological activities of perilla ketone and isoegomaketone; (2) summarize their effects; and (3) discuss future research perspectives.
Collapse
Affiliation(s)
- Ruo Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qianru Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengling Feng
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Juzhao Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuxuan Qin
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Linghua Meng
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|