1
|
Mejia-Mendez JL, Reza-Zaldívar EE, Sanchez-Martinez A, Ceballos-Sanchez O, Navarro-López DE, Marcelo Lozano L, Armendariz-Borunda J, Tiwari N, Jacobo-Velázquez DA, Sanchez-Ante G, López-Mena ER. Exploring the cytotoxic and antioxidant properties of lanthanide-doped ZnO nanoparticles: a study with machine learning interpretation. J Nanobiotechnology 2024; 22:687. [PMID: 39523303 PMCID: PMC11552316 DOI: 10.1186/s12951-024-02957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Lanthanide-based nanomaterials offer a promising alternative for cancer therapy because of their selectivity and effectiveness, which can be modified and predicted by leveraging the improved accuracy and enhanced decision-making of machine learning (ML) modeling. METHODS In this study, erbium (Er3+) and ytterbium (Yb3+) were used to dope zinc oxide (ZnO) nanoparticles (NPs). Various characterization techniques and biological assays were employed to investigate the physicochemical and optical properties of the (Er, Yb)-doped ZnO NPs, revealing the influence of the lanthanide elements. RESULTS The (Er, Yb)-doped ZnO NPs exhibited laminar-type morphologies, negative surface charges, and optical bandgaps that vary with the presence of Er3+ and Yb3+. The incorporation of lanthanide ions reduced the cytotoxicity activity of ZnO against HEPG-2, CACO-2, and U87 cell lines. Conversely, doping with Er3+ and Yb3+ enhanced the antioxidant activity of the ZnO against DPPH, ABTS, and H2O2 radicals. The extra tree (ET) and random forest (RF) models predicted the relevance of the characterization results vis-à-vis the cytotoxic properties of the synthesized NPs. CONCLUSION This study demonstrates, for the first time, the synthesis of ZnO NPs doped with Er and Yb via a solution polymerization route. According to characterization results, it was unveiled that the effect of optical bandgap variations influenced the cytotoxic performance of the developed lanthanide-doped ZnO NPs, being the undoped ZnO NPs the most cytotoxic ones. The presence alone or in combination of Er and Yb enhanced their scavenging capacity. ML models such as ET and RF efficiently demonstrated that the concentration and cell line type are key parameters that influence the cytotoxicity of (Er, Yb)-doped ZnO NPs achieving high accuracy rates of 98.96% and 98.67%, respectively. This study expands the knowledge of lanthanides as dopants of nanomaterials for biological and medical applications and supports their potential in cancer therapy by integrating robust ML approaches.
Collapse
Affiliation(s)
- Jorge L Mejia-Mendez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula, Puebla, 72810, Mexico
| | - Edwin E Reza-Zaldívar
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. General Ramon Corona 2514, Zapopan, Jalisco, 45201, Mexico
| | - A Sanchez-Martinez
- Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial los Belenes, Zapopan, Jalisco, 45157, México
| | - O Ceballos-Sanchez
- Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial los Belenes, Zapopan, Jalisco, 45157, México
| | - Diego E Navarro-López
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan, Jalisco, 45138, Mexico
| | - L Marcelo Lozano
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan, Jalisco, 45138, Mexico
| | - Juan Armendariz-Borunda
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Ave. General Ramon Corona 2514, Zapopan, Jalisco, 45138, Mexico
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, 44340, Mexico
| | - Naveen Tiwari
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), , University of Santiago de Compostela, Rúa Jenaro de La Fuente S/N, 15782, Santiago de Compostela, A Coruna, 15782, Mexico.
| | - Daniel A Jacobo-Velázquez
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. General Ramon Corona 2514, Zapopan, Jalisco, 45201, Mexico.
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan, Jalisco, 45138, Mexico.
| | - Gildardo Sanchez-Ante
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan, Jalisco, 45138, Mexico.
| | - Edgar R López-Mena
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan, Jalisco, 45138, Mexico.
| |
Collapse
|
2
|
Bordin ER, Yamamoto FY, Filho NPM, Ramsdorf WA, Cestari MM. Ecotoxicity of doped zinc oxide nanoparticles: Perspectives on environmental safety. CHEMOSPHERE 2024; 358:142185. [PMID: 38685328 DOI: 10.1016/j.chemosphere.2024.142185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Studies on the ecotoxicity of doped zinc oxide nanoparticles (ZnO NPs) are recent, with the first publications starting in 2010. In this sense, this is the first study that comprehensively reviews the ecotoxicological effects of ZnO NPs doped with lanthanide elements to fill this literature gap. This research explores a multifaceted question at the intersection of nanotechnology, toxicology, and environmental science. Different types of dopants commonly used for ZnO doping were investigated in this review, focusing on the ecotoxicological effects of lanthanides as dopants. Bacteria were the main class of organisms used in ecotoxicological studies, since antimicrobial activity of these nanomaterials is extensively explored to combat the imminent problem of resistant bacteria, in addition to enabling the safe use of these nanomaterials for biomedical applications. Doping appears to exhibit greater efficacy when compared to undoped ZnO NPs in terms of antimicrobial effects; however, it cannot be said that it has no impact on non-target organisms. An extensive examination of the literature also establishes the importance and need to evaluate the effects of doped ZnO NPs on organisms from different environmental compartments in order to identify their potential impacts. We underscore the dearth of research information regarding the environmental toxicity/ecotoxicity of doped ZnO nanoparticles across various ecological levels, thereby limiting the extrapolation of findings to humans or other complex models. Therefore, we emphasize the urgency of a multi-parameter assessment for the development of sanitary and environmentally safe nanotechnologies.
Collapse
Affiliation(s)
| | - Flávia Yoshie Yamamoto
- Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Wanessa Algarte Ramsdorf
- Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Curitiba, PR, Brazil
| | | |
Collapse
|
3
|
Ceballos-Sanchez O, Navarro-López DE, Mejía-Méndez JL, Sanchez-Ante G, Rodríguez-González V, Sánchez-López AL, Sanchez-Martinez A, Duron-Torres SM, Juarez-Moreno K, Tiwari N, López-Mena ER. Enhancing antioxidant properties of CeO 2 nanoparticles with Nd 3+ doping: structural, biological, and machine learning insights. Biomater Sci 2024; 12:2108-2120. [PMID: 38450552 DOI: 10.1039/d3bm02107f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The antioxidant capabilities of nanoparticles are contingent upon various factors, including their shape, size, and chemical composition. Herein, novel Nd-doped CeO2 nanoparticles were synthesized and the neodymium content was varied to investigate the synergistic impact on the antioxidant properties of CeO2 nanoparticles. Incorporating Nd3+ induced changes in lattice parameters and significantly altered the morphology from nanoparticles to nanorods. The biological activity of Nd-doped CeO2 was examined against pathogenic bacterial strains, breast cancer cell lines, and antioxidant models. The antibacterial and anticancer activities of nanoparticles were not observed, which could be associated with the Ce3+/Ce4+ ratio. Notably, the incorporation of neodymium improved the antioxidant capacity of CeO2. Machine learning techniques were employed to forecast the antioxidant activity to enhance understanding and predictive capabilities. Among these models, the random forest model exhibited the highest accuracy at 96.35%, establishing it as a robust computational tool for elucidating the biological behavior of Nd-doped CeO2 nanoparticles. This study presents the first exploration of the influence of Nd3+ on the structural, optical, and biological attributes of CeO2, contributing valuable insights and extending the application of machine learning in predicting the therapeutic efficacy of inorganic nanomaterials.
Collapse
Affiliation(s)
- Oscar Ceballos-Sanchez
- Universidad de Guadalajara, Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI), Departamento de Ingenieria de Proyectos, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan, Jalisco, 45157, Mexico.
| | - Diego E Navarro-López
- Tecnologico de Monterrey, Escuela de ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan, Jalisco, 45121, Mexico
| | - Jorge L Mejía-Méndez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, 72810 Cholula, Puebla, Mexico
| | - Gildardo Sanchez-Ante
- Tecnologico de Monterrey, Escuela de ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan, Jalisco, 45121, Mexico
| | - Vicente Rodríguez-González
- División de Materiales Avanzados, IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, S.L.P., Mexico
| | - Angélica Lizeth Sánchez-López
- Tecnologico de Monterrey, Escuela de ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan, Jalisco, 45121, Mexico
| | - Araceli Sanchez-Martinez
- Universidad de Guadalajara, Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI), Departamento de Ingenieria de Proyectos, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan, Jalisco, 45157, Mexico.
| | - Sergio M Duron-Torres
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI, Carretera Zacatecas, Guadalajara Km 6, Ejido La Escondida, 98160, Zacatecas, Mexico
| | - Karla Juarez-Moreno
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro, QRO 76230, Mexico
| | - Naveen Tiwari
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), C/Jenaro de la Fuente s/n, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Edgar R López-Mena
- Tecnologico de Monterrey, Escuela de ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan, Jalisco, 45121, Mexico
| |
Collapse
|
4
|
Hassan A, Jalil A, Ilyas SZ, Iqbal MF, Ali Shah SZ, Baqir Y. Green-route synthesis and ab-initio studies of a highly efficient nano photocatalyst:Ce/zinc-oxide nanopetals. Heliyon 2024; 10:e25581. [PMID: 38356607 PMCID: PMC10864955 DOI: 10.1016/j.heliyon.2024.e25581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
In the present work, Zinc-oxide nanostructures and Ce/Zinc-oxide nanopetals were synthesized by a new environmentally friendly green synthesis method using the Withania coagulans plant. Cerium nitrate Ce(NO3)3 and zinc nitrate Zn(NO3)2 were used as precursors. The prepared nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet spectroscopy (UV-vis). Crystal planes (100), (002), (101), (102), (110), (103), (200), (112) and (201) at 2θ 31.75°, 34.35°, 36.2°, 47.55°, 56.6°, 62.75°, 66.3°, 67.9°, and 69.09° respectively confirmed the hexagonal wurtzite crystal structure of Zinc-oxide. Angular shifts for Ce1% doped Zinc-oxide and Ce3% doped Zinc-oxide nanopetal nanostructures were observed in the (100) and (101) planes of the crystal. More specifically, using Scherrer's equation, the crystallite sizes of Zinc-oxide, Ce1% doped Zinc-oxide nanopetals, Ce3% doped Zinc-oxide nanopetals, and Ce5% doped Zinc-oxide nanopetals were 16.48 ± 02 nm, 17.8 ± 2 nm, 18.8 ± 2 nm, and 18.87 ± 2 nm, respectively. The pure Zinc-oxide grain had the appearance of a nanoflower. On the other hand, the nanopetal structure of Ce5% doped Zinc-oxide nanopetals had oval-shaped nanopetal morphology. The absorption peaks were observed at 373, 376.4, 377, and 378 nm for Zinc-oxide, Ce1% doped Zinc-oxide nanopetals, Ce3% doped Zinc-oxide nanopetals, and Ce5% doped Zinc-oxide nanopetals, respectively, which results in a progressive redshift. The gap energies of Zinc-oxide, Ce1% doped Zinc-oxide nanopetals, Ce3% doped Zinc-oxide nanopetals, and Ce5% doped Zinc-oxide nanopetals were 2.796, 2.645, 2.534, and 2.448 eV, respectively. Photodegradation under visible light (>400 nm) indicates the high efficiency of the photocatalyst based on Ce5% doped Zinc-oxide nanopetals. DFT calculations, structural changes, charge analysis, and electronic band structures were carried out to confirm the experiment.
Collapse
Affiliation(s)
- Ather Hassan
- Department of Physics, Allama Iqbal Open University, Islamabad, Pakistan
| | - Abdul Jalil
- Department of Physics, Allama Iqbal Open University, Islamabad, Pakistan
| | - Syed Zafar Ilyas
- Department of Physics, Allama Iqbal Open University, Islamabad, Pakistan
| | - Muhammad Faisal Iqbal
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China
| | | | - Yadullah Baqir
- Department of Agriculture, Allama Iqbal Open University, Islamabad, Pakistan
| |
Collapse
|