1
|
Roopnarine O, Thomas DD. Structural Dynamics of Protein Interactions Using Site-Directed Spin Labeling of Cysteines to Measure Distances and Rotational Dynamics with EPR Spectroscopy. APPLIED MAGNETIC RESONANCE 2024; 55:79-100. [PMID: 38371230 PMCID: PMC10868710 DOI: 10.1007/s00723-023-01623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 02/20/2024]
Abstract
Here we review applications of site-directed spin labeling (SDSL) with engineered cysteines in proteins, to study the structural dynamics of muscle and non-muscle proteins, using and developing the electron paramagnetic resonance (EPR) spectroscopic techniques of dipolar EPR, double electron electron resonance (DEER), saturation transfer EPR (STEPR), and orientation measured by EPR. The SDSL technology pioneered by Wayne Hubbell and collaborators has greatly expanded the use of EPR, including the measurement of distances between spin labels covalently attached to proteins and peptides. The Thomas lab and collaborators have applied these techniques to elucidate dynamic interactions in the myosin-actin complex, myosin-binding protein C, calmodulin, ryanodine receptor, phospholamban, utrophin, dystrophin, β-III-spectrin, and Aurora kinase. The ability to design and engineer cysteines in proteins for site-directed covalent labeling has enabled the use of these powerful EPR techniques to measure distances, while showing that they are complementary with optical spectroscopy measurements.
Collapse
Affiliation(s)
- Osha Roopnarine
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Bunch TA, Guhathakurta P, Thompson AR, Lepak VC, Carter AL, Thomas JJ, Thomas DD, Colson BA. Drug discovery for heart failure targeting myosin-binding protein C. J Biol Chem 2023; 299:105369. [PMID: 37865311 PMCID: PMC10692721 DOI: 10.1016/j.jbc.2023.105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023] Open
Abstract
Cardiac MyBP-C (cMyBP-C) interacts with actin and myosin to fine-tune cardiac muscle contractility. Phosphorylation of cMyBP-C, which reduces the binding of cMyBP-C to actin and myosin, is often decreased in patients with heart failure (HF) and is cardioprotective in model systems of HF. Therefore, cMyBP-C is a potential target for HF drugs that mimic its phosphorylation and/or perturb its interactions with actin or myosin. We labeled actin with fluorescein-5-maleimide (FMAL) and the C0-C2 fragment of cMyBP-C (cC0-C2) with tetramethylrhodamine (TMR). We performed two complementary high-throughput screens (HTS) on an FDA-approved drug library, to discover small molecules that specifically bind to cMyBP-C and affect its interactions with actin or myosin, using fluorescence lifetime (FLT) detection. We first excited FMAL and detected its FLT, to measure changes in fluorescence resonance energy transfer (FRET) from FMAL (donor) to TMR (acceptor), indicating binding. Using the same samples, we then excited TMR directly, using a longer wavelength laser, to detect the effects of compounds on the environmentally sensitive FLT of TMR, to identify compounds that bind directly to cC0-C2. Secondary assays, performed on selected modulators with the most promising effects in the primary HTS assays, characterized the specificity of these compounds for phosphorylated versus unphosphorylated cC0-C2 and for cC0-C2 versus C1-C2 of fast skeletal muscle (fC1-C2). A subset of identified compounds modulated ATPase activity in cardiac and/or skeletal myofibrils. These assays establish the feasibility of the discovery of small-molecule modulators of the cMyBP-C-actin/myosin interaction, with the ultimate goal of developing therapies for HF.
Collapse
Affiliation(s)
- Thomas A Bunch
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew R Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Victoria C Lepak
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Anna L Carter
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA; Photonic Pharma LLC, Minneapolis, Minnesota, USA.
| | - Brett A Colson
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
3
|
Paiva ACF, Lemos AR, Busse P, Martins MT, Silva DO, Freitas MC, Santos SP, Freire F, Barrey EJ, Manival X, Koetzner L, Heinrich T, Wegener A, Grädler U, Bandeiras TM, Schwarz D, Sousa PMF. Extract2Chip-Bypassing Protein Purification in Drug Discovery Using Surface Plasmon Resonance. BIOSENSORS 2023; 13:913. [PMID: 37887106 PMCID: PMC10605449 DOI: 10.3390/bios13100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Modern drug discovery relies on combinatorial screening campaigns to find drug molecules targeting specific disease-associated proteins. The success of such campaigns often relies on functional and structural information of the selected therapeutic target, only achievable once its purification is mastered. With the aim of bypassing the protein purification process to gain insights on the druggability, ligand binding, and/or characterization of protein-protein interactions, herein, we describe the Extract2Chip method. This approach builds on the immobilization of site-specific biotinylated proteins of interest, directly from cellular extracts, on avidin-coated sensor chips to allow for the characterization of molecular interactions via surface plasmon resonance (SPR). The developed method was initially validated using Cyclophilin D (CypD) and subsequently applied to other drug discovery projects in which the targets of interest were difficult to express, purify, and crystallize. Extract2Chip was successfully applied to the characterization of Yes-associated protein (YAP): Transcriptional enhancer factor TEF (TEAD1) protein-protein interaction inhibitors, in the validation of a ternary complex assembly composed of Dyskerin pseudouridine synthase 1 (DKC1) and RuvBL1/RuvBL2, and in the establishment of a fast-screening platform to select the most suitable NUAK family SNF1-like kinase 2 (NUAK2) surrogate for binding and structural studies. The described method paves the way for a potential revival of the many drug discovery campaigns that have failed to deliver due to the lack of suitable and sufficient protein supply.
Collapse
Affiliation(s)
- Ana C. F. Paiva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana R. Lemos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Philipp Busse
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Madalena T. Martins
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
| | - Diana O. Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Micael C. Freitas
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sandra P. Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Filipe Freire
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Evelyne J. Barrey
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Xavier Manival
- IMoPA, CNRS, Université de Lorraine, F-54000 Nancy, France;
| | - Lisa Koetzner
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Timo Heinrich
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Ansgar Wegener
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Ulrich Grädler
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Tiago M. Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Daniel Schwarz
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Pedro M. F. Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|