1
|
Stefani A. Circadian pattern in restless legs syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2025; 206:105-111. [PMID: 39864920 DOI: 10.1016/b978-0-323-90918-1.00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
This chapter provides an overview of circadian pattern in restless legs syndrome (RLS). Circadian variation of symptoms is a known feature of RLS. According to one of the five essential criteria for RLS diagnosis, symptoms "only occur or are worse in the evening or at night than during the day." RLS symptoms are most pronounced in the evening and at night, with a relative improvement in the late sleep period or in the early morning. This unique feature helps differentiating RLS from other movement disorders. Although differentiating the circadian pattern of RLS manifestations from the worsening of RLS symptoms at rest is not always easy, the independency of these two features has been demonstrated in several studies. Mechanisms implicated in circadian variations of RLS include dopamine, iron, opioids, and genetic factors, which all interact with each other. Further insights on circadian fluctuations in patients with RLS derive from clinical studies reporting circadian variations in sensory processing and spinal excitability, as well as from studies showing circadian variations in cortical excitability, default mode network, and cognition in patients with RLS.
Collapse
Affiliation(s)
- Ambra Stefani
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Xiao G, Shi H, Lan Q, Hu J, Guan J, Liang Z, Zhou C, Huang Z, Chen Y, Zhou B. Association among attention-deficit hyperactivity disorder, restless legs syndrome, and peripheral iron status: a two-sample Mendelian randomization study. Front Psychiatry 2024; 15:1310259. [PMID: 38779543 PMCID: PMC11109751 DOI: 10.3389/fpsyt.2024.1310259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/19/2024] [Indexed: 05/25/2024] Open
Abstract
Background Epidemiological evidence indicates a high correlation and comorbidity between Attention Deficit Hyperactivity Disorder (ADHD) and Restless Legs Syndrome (RLS). Objective We aimed to investigate the causal relationship and shared genetic architecture between ADHD and RLS, as well as explore potential causal associations between both disorders and peripheral iron status. Methods We performed two-sample Mendelian randomization (MR) analyses using summary statistics from genome-wide meta-analyses of ADHD, RLS, and peripheral iron status (serum iron, ferritin, transferrin saturation, and total iron binding capacity). Additionally, we employed linkage disequilibrium score regression (LDSC) to assess genetic correlations between ADHD and RLS using genetic data. Results Our MR results supports a causal effect from ADHD (as exposure) to RLS (as outcome) (inverse variance weighted OR = 1.20, 95% CI: 1.08-1.34, p = 0.001). Conversely, we found no a causal association from RLS to ADHD (inverse variance weighted OR = 1.04, 95% CI: 0.99-1.09, p = 0.11). LDSC analysis did not detect a significant genetic correlation between RLS and ADHD (Rg = 0.3, SE = 0.16, p = 0.068). Furthermore, no evidence supported a causal relationship between peripheral iron deficiency and the RLS or ADHD onset. However, RLS may have been associated with a genetic predisposition to reduced serum ferritin levels (OR = 1.20, 95% CI: 1.00-1.04, p = 0.047). Conclusion This study suggests that ADHD is an independent risk factor for RLS, while RLS may confer a genetic predisposition to reduced serum ferritin levels. Limitations The GWAS summary data utilized originated from populations of European ancestry, limiting the generalizability of conclusions to other populations. Clinical implications The potential co-occurrence of RLS in individuals with ADHD should be considered during diagnosis and treatment. Moreover, iron supplementation may be beneficial for alleviating RLS symptoms.
Collapse
Affiliation(s)
- Guoqiang Xiao
- Department of Psychiatry and Psychology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongting Shi
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiaoyu Lan
- Department of Psychiatry and Psychology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiajia Hu
- Department of Psychiatry and Psychology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jincheng Guan
- Department of Neurology, Longhua District People’s Hospital, Shenzhen, China
| | - Zhuoji Liang
- Department of Neurology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chumeng Zhou
- Medical Administration College, Guangzhou Medical University, Guangzhou, China
| | - Zitong Huang
- Department of Psychiatry and Psychology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongyuan Chen
- Department of Neurology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Borong Zhou
- Department of Psychiatry and Psychology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
McNamara S, Hon B, Kirshblum S. Restless leg syndrome in spinal cord injury: case report. Spinal Cord Ser Cases 2023; 9:19. [PMID: 37137889 PMCID: PMC10156660 DOI: 10.1038/s41394-023-00576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023] Open
Abstract
CASE DESCRIPTION Restless leg syndrome (RLS) is a condition infrequently reported in spinal cord injury that causes an uncomfortable sensation in the legs and an urge to move them. We report a case involving a 63-year-old man with incomplete paraplegia with an onset of RLS four years post injury. FINDINGS Based upon history, pramipexole was prescribed for the presumptive diagnosis of RLS, with good effect. Initial workup revealed an anemia (hemoglobin of 9.3 gram/deciliter (g/dl)) and iron deficiency (ferritin of 10 microgram/liter (μg/L)), necessitating further evaluation. CONCLUSION Due to the complexities in diagnosing RLS in patients with SCI, it is important to be cognizant of symptoms and to consider this diagnosis to initiate the appropriate work-up for an etiology, of which iron deficiency anemia is common.
Collapse
Affiliation(s)
- Shane McNamara
- Rutgers New Jersey Medical School, Department of Physical Medicine and Rehabilitation, Newark, NJ, USA.
| | - Beverly Hon
- Rutgers New Jersey Medical School, Department of Physical Medicine and Rehabilitation, Newark, NJ, USA
- Spinal Cord Injury & Disorders Department, Veteran Administration New Jersey Healthcare System, East Orange, NJ, USA
| | - Steven Kirshblum
- Rutgers New Jersey Medical School, Department of Physical Medicine and Rehabilitation, Newark, NJ, USA
- Kessler Institute for Rehabilitation, West Orange, New Jersey. Kessler Foundation, West Orange, NJ, USA
| |
Collapse
|
4
|
Park KM, Kim KT, Lee DA, Cho YW. Alterations of the thalamic nuclei volumes and intrinsic thalamic network in patients with restless legs syndrome. Sci Rep 2023; 13:4415. [PMID: 36932255 PMCID: PMC10023689 DOI: 10.1038/s41598-023-31606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
We aimed to investigate the alterations of thalamic nuclei volumes and intrinsic thalamic network in patients with primary restless legs syndrome (RLS) compared to healthy controls. Seventy-one patients with primary RLS and 55 healthy controls were recruited. They underwent brain MRI using a three-tesla MRI scanner, including three-dimensional T1-weighted images. The intrinsic thalamic network was determined using graph theoretical analysis. The right and left whole thalamic volumes, and the right pulvinar inferior, left ventral posterolateral, left medial ventral, and left pulvinar inferior nuclei volumes in the patients with RLS were lower than those in healthy controls (0.433 vs. 0.447%, p = 0.034; 0.482 vs. 0.502%, p = 0.016; 0.013 vs. 0.015%, p = 0.031; 0.062 vs. 0.065%, p = 0.035; 0.001 vs. 0.001%, p = 0.034; 0.018 vs. 0.020%, p = 0.043; respectively). There was also a difference in the intrinsic thalamic network between the groups. The assortative coefficient in patients with RLS was higher than that in healthy controls (0.0318 vs. - 0.0358, p = 0.048). We demonstrated the alterations of thalamic nuclei volumes and intrinsic thalamic network in patients with RLS compared to healthy controls. These changes might be related to RLS pathophysiology and suggest the pivotal role of the thalamus in RLS symptoms.
Collapse
Affiliation(s)
- Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Keun Tae Kim
- Department of Neurology, Keimyung University School of Medicine, 1035 Dalgubeoldae-ro, Dalseo-gu, Daegu, 42601, Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Yong Won Cho
- Department of Neurology, Keimyung University School of Medicine, 1035 Dalgubeoldae-ro, Dalseo-gu, Daegu, 42601, Korea.
| |
Collapse
|
5
|
Silvani A, Ghorayeb I, Manconi M, Li Y, Clemens S. Putative Animal Models of Restless Legs Syndrome: A Systematic Review and Evaluation of Their Face and Construct Validity. Neurotherapeutics 2023; 20:154-178. [PMID: 36536233 PMCID: PMC10119375 DOI: 10.1007/s13311-022-01334-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Restless legs syndrome (RLS) is a sensorimotor disorder that severely affects sleep. It is characterized by an urge to move the legs, which is often accompanied by periodic limb movements during sleep. RLS has a high prevalence in the population and is usually a life-long condition. While its origins remain unclear, RLS is initially highly responsive to treatment with dopaminergic agonists that target D2-like receptors, in particular D2 and D3, but the long-term response is often unsatisfactory. Over the years, several putative animal models for RLS have been developed, mainly based on the epidemiological and neurochemical link with iron deficiency, treatment efficacy of D2-like dopaminergic agonists, or genome-wide association studies that identified risk factors in the patient population. Here, we present the first systematic review of putative animal models of RLS, provide information about their face and construct validity, and report their role in deciphering the underlying pathophysiological mechanisms that may cause or contribute to RLS. We propose that identifying the causal links between genetic risk factors, altered organ functions, and changes to molecular pathways in neural circuitry will eventually lead to more effective new treatment options that bypass the side effects of the currently used therapeutics in RLS, especially for long-term therapy.
Collapse
Affiliation(s)
- Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Ravenna Campus, Ravenna, Italy
| | - Imad Ghorayeb
- Département de Neurophysiologie Clinique, Pôle Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Université de Bordeaux, Bordeaux, France
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, CNRS, Bordeaux, France
| | - Mauro Manconi
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, EOC, Ospedale Civico, Lugano, Switzerland
- Department of Neurology, University Hospital, Inselspital, Bern, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Yuqing Li
- Department of Neurology, College of Medicine, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
6
|
Earley CJ, Jones BC, Ferré S. Brain-iron deficiency models of restless legs syndrome. Exp Neurol 2022; 356:114158. [PMID: 35779614 PMCID: PMC9357217 DOI: 10.1016/j.expneurol.2022.114158] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/04/2022]
Abstract
Restless legs syndrome (RLS) is a common sensorimotor disorder for which two main pathological elements are fairly well accepted: Brain iron deficiency (BID) and an altered dopaminergic system. The ability to better understand the causal and consequential factors related to these two pathological elements, would hopefully lead to the development of better therapeutic strategies for treating, if not curing, this disease. The current understanding of the relationship between these two elements is that BID leads to some alterations in neurotransmitters and subsequent changes in the dopaminergic system. Therefore, rodent models based on diet-induced BID, provide a biological substrate to understand the consequences of BID on dopaminergic pathway and on alternative pathways that may be involved. In this review, we present the current research on dopaminergic changes found in RLS subjects and compare that to what is seen in the BID rodent model to provide a validation of the BID rodent model. We also demonstrate the ability of the BID model to predict changes in other neurotransmitter systems and how that has led to new treatment options. Finally, we will present arguments for the utility of recombinant inbred mouse strains that demonstrate natural variation in brain iron, to explore the genetic basis of altered brain iron homeostasis as a model to understand why in idiopathic RLS there can exist a BID despite normal peripheral iron store. This review is the first to draw on 25 years of human and basic research into the pathophysiology of RLS to provide strong supportive data as to the validity of BID model as an important translational model of the disease. As we will demonstrate here, not only does the BID model closely and accurately mimic what we see in the dopaminergic system of RLS, it is the first model to identify alternative systems from which new treatments have recently been developed.
Collapse
Affiliation(s)
- Christopher J Earley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Byron C Jones
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institutes of Health/National Institute on Drug Abuse, Baltimore, MD, USA
| |
Collapse
|
7
|
Heidbreder A, Kotterba S. Aktuelle Entwicklungen in der Schlafforschung und Schlafmedizin – eine Einschätzung der AG „Motorik“. SOMNOLOGIE 2022; 26:165-166. [PMID: 36061475 PMCID: PMC9425805 DOI: 10.1007/s11818-022-00371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 10/25/2022]
|
8
|
Salminen AV, Clemens S, García-Borreguero D, Ghorayeb I, Li Y, Manconi M, Ondo W, Rye D, Siegel JM, Silvani A, Winkelman JW, Allen RP, Ferré S. Consensus guidelines on the construct validity of rodent models of restless legs syndrome. Dis Model Mech 2022; 15:dmm049615. [PMID: 35946581 PMCID: PMC9393041 DOI: 10.1242/dmm.049615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/10/2022] [Indexed: 12/16/2022] Open
Abstract
Our understanding of the causes and natural course of restless legs syndrome (RLS) is incomplete. The lack of objective diagnostic biomarkers remains a challenge for clinical research and for the development of valid animal models. As a task force of preclinical and clinical scientists, we have previously defined face validity parameters for rodent models of RLS. In this article, we establish new guidelines for the construct validity of RLS rodent models. To do so, we first determined and agreed on the risk, and triggering factors and pathophysiological mechanisms that influence RLS expressivity. We then selected 20 items considered to have sufficient support in the literature, which we grouped by sex and genetic factors, iron-related mechanisms, electrophysiological mechanisms, dopaminergic mechanisms, exposure to medications active in the central nervous system, and others. These factors and biological mechanisms were then translated into rodent bioequivalents deemed to be most appropriate for a rodent model of RLS. We also identified parameters by which to assess and quantify these bioequivalents. Investigating these factors, both individually and in combination, will help to identify their specific roles in the expression of rodent RLS-like phenotypes, which should provide significant translational implications for the diagnosis and treatment of RLS.
Collapse
Affiliation(s)
- Aaro V. Salminen
- Institute of Neurogenomics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | - Imad Ghorayeb
- Département de Neurophysiologie Clinique, Pôle Neurosciences Cliniques, CHU de Bordeaux, 33076 Bordeaux, France
- Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, 33076 Bordeaux, France
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, 33076 Bordeaux, France
| | - Yuqing Li
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mauro Manconi
- Sleep Medicine Unit, Regional Hospital of Lugano, Neurocenter of Southern Switzerland, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Department of Neurology, University Hospital Inselspital, 3010 Bern, Switzerland
| | - William Ondo
- Houston Methodist Hospital Neurological Institute, Weill Cornell Medical School, Houston, TX 77070, USA
| | - David Rye
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jerome M. Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA 90095, USA
- Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, North Hills, CA 91343, USA
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences Alma Mater Studiorum, Università di Bologna, 48121 Ravenna Campus, Ravenna, Italy
| | - John W. Winkelman
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard P. Allen
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
9
|
Restless Legs Syndrome: Known Knowns and Known Unknowns. Brain Sci 2022; 12:brainsci12010118. [PMID: 35053861 PMCID: PMC8773543 DOI: 10.3390/brainsci12010118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Although restless legs syndrome (RLS) is a common neurological disorder, it remains poorly understood from both clinical and pathophysiological perspectives. RLS is classified among sleep-related movement disorders, namely, conditions characterized by simple, often stereotyped movements occurring during sleep. However, several clinical, neurophysiological and neuroimaging observations question this view. The aim of the present review is to summarize and query some of the current concepts (known knowns) and to identify open questions (known unknowns) on RLS pathophysiology. Based on several lines of evidence, we propose that RLS should be viewed as a disorder of sensorimotor interaction with a typical circadian pattern of occurrence, possibly arising from neurochemical dysfunction and abnormal excitability in different brain structures.
Collapse
|
10
|
Franco B, Mota DS, Daubian-Nosé P, Rodrigues NDA, Simino LADP, de Fante T, Bezerra RMN, Manchado Gobatto FDB, Manconi M, Torsoni AS, Esteves AM. Iron deficiency in pregnancy: Influence on sleep, behavior, and molecular markers of adult male offspring. J Neurosci Res 2021; 99:3325-3338. [PMID: 34651324 DOI: 10.1002/jnr.24968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
Iron restriction during pregnancy can lead to iron deficiency and changes in the dopaminergic system in the adulthood of offspring, and restless legs syndrome (RLS) is closely related to these changes. Objectives: Analyze whether iron restriction during pregnancy would cause changes in the behavior, sleep, and dopaminergic system of the male offspring. In addition, we aimed to assess whether exercise would be able to modulate these variables. The pregnant rats (Wistar) were divided into four groups with different concentrations of iron in the diet: standard (St), supplementation (Su), restriction since weaning (R1), and restriction only during pregnancy (R2). After birth, the offspring were assigned to their respective groups according to the dams diet (St, Su, R1, and R2) and distributed into sedentary (SD) and exercised (EX) (for 8 weeks of training), reaching eight groups of offspring (O): OSt SD, OSt EX, OSu SD, OSu EX, OR1 SD, OR1 EX, OR2 SD, and OR2 EX. Sleep, behavior, and analysis of key genes of dopaminergic system (D2, DAT) were performed after 8 weeks. The results for trained offspring that the mother received supplementation diet were the most expressive, with increased freezing and the OR1 SD group showed an increase in DAT protein content. These changes may have been due to the association between the dams diet during pregnancy and the practice of exercise by the offspring. The different concentrations of iron during pregnancy caused changes in the offspring, however, they were not associated with fetal programming in the context of RLS.
Collapse
Affiliation(s)
- Beatriz Franco
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Campinas, Brazil
| | - Diego Silva Mota
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, Brazil
| | - Paulo Daubian-Nosé
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, Brazil
| | | | | | - Thaís de Fante
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, Brazil
| | | | - Fúlvia de Barros Manchado Gobatto
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Campinas, Brazil.,Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, Brazil
| | - Mauro Manconi
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital of Lugano (EOC), Lugano, Switzerland
| | | | - Andrea Maculano Esteves
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Campinas, Brazil.,Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, Brazil
| |
Collapse
|
11
|
Ferré S, Guitart X, Quiroz C, Rea W, García-Malo C, Garcia-Borreguero D, Allen RP, Earley CJ. Akathisia and Restless Legs Syndrome: Solving the Dopaminergic Paradox. Sleep Med Clin 2021; 16:249-267. [PMID: 33985651 DOI: 10.1016/j.jsmc.2021.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Akathisia is an urgent need to move that is associated with treatment with dopamine receptor blocking agents (DRBAs) and with restless legs syndrome (RLS). The pathogenetic mechanism of akathisia has not been resolved. This article proposes that it involves an increased presynaptic dopaminergic transmission in the ventral striatum and concomitant strong activation of postsynaptic dopamine D1 receptors, which form complexes (heteromers) with dopamine D3 and adenosine A1 receptors. It also proposes that in DRBA-induced akathisia, increased dopamine release depends on inactivation of autoreceptors, whereas in RLS it depends on a brain iron deficiency-induced down-regulation of striatal presynaptic A1 receptors.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Xavier Guitart
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - César Quiroz
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - William Rea
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Celia García-Malo
- Sleep Research Institute, Paseo de la Habana 151, Madrid 28036, Spain
| | | | - Richard P Allen
- Department of Neurology, Johns Hopkins University, Johns Hopkins Bayview Medical Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Christopher J Earley
- Department of Neurology, Johns Hopkins University, Johns Hopkins Bayview Medical Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| |
Collapse
|
12
|
Salminen AV, Silvani A, Allen RP, Clemens S, Garcia-Borreguero D, Ghorayeb I, Ferré S, Li Y, Ondo W, Picchietti DL, Rye D, Siegel JM, Winkelman JW, Manconi M. Consensus Guidelines on Rodent Models of Restless Legs Syndrome. Mov Disord 2021; 36:558-569. [PMID: 33382140 PMCID: PMC8313425 DOI: 10.1002/mds.28401] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 01/18/2023] Open
Abstract
Restless legs syndrome (RLS) is a chronic sensorimotor disorder diagnosed by clinical symptoms. It is challenging to translate the diagnostic self-reported features of RLS to animals. To help researchers design their experiments, a task force was convened to develop consensus guidelines for experimental readouts in RLS animal models. The RLS clinical diagnostic criteria were used as a starting point. After soliciting additional important clinical features of RLS, a consensus set of methods and outcome measures intent on capturing these features-in the absence of a face-to-face interview-was generated and subsequently prioritized by the task force. These were, in turn, translated into corresponding methods and outcome measures for research on laboratory rats and mice and used to generate the final recommendations. The task force recommended activity monitoring and polysomnography as principal tools in assessing RLS-like behavior in rodents. Data derived from these methods were determined to be the preferred surrogate measures for the urge to move, the principal defining feature of RLS. The same tools may be used to objectively demonstrate sleep-state features highly associated with RLS, such as sleep disturbance and number and periodicity of limb movements. Pharmacological challenges and dietary or other manipulations that affect iron availability are desirable to aggravate or improve RLS-like behavior and lend greater confidence that the animal model being proffered replicates key clinical features of RLS. These guidelines provide the first consensus experimental framework for researchers to use when developing new rodent models of RLS. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Aaro V. Salminen
- Institute of Neurogenomics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany,Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Richard P. Allen
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | | | - Imad Ghorayeb
- Département de Neurophysiologie Clinique, Pôle Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France,Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, UMR 5287, Bordeaux, France,CNRS, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, UMR 5287, Bordeaux, France
| | - Sergi Ferré
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - William Ondo
- Houston Methodist Hospital Neurological Institute, Weill Cornell Medical School, Houston, Texas, USA
| | - Daniel L. Picchietti
- University of Illinois School of Medicine, Carle Illinois College of Medicine and Carle Foundation Hospital, Urbana, Illinois, USA
| | - David Rye
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jerome M. Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA,Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, North Hills, California, USA
| | - John W. Winkelman
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mauro Manconi
- Sleep Medicine Unit, Regional Hospital of Lugano, Neurocenter of Southern Switzerland, Lugano, Switzerland,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland,Department of Neurology, University Hospital Inselspital, Bern, Switzerland,Correspondence to: Dr. Mauro Manconi, Sleep Medicine, Neurocenter of Southern Switzerland, Via Tesserete 46, Regional Hospital of Lugano, 6900 Lugano, Switzerland;
| | | |
Collapse
|
13
|
Colzato LS, Zhang W, Brandt MD, Stock AK, Beste C. Cognitive profile in Restless Legs Syndrome: A signal-to-noise ratio account. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100021. [PMID: 36246509 PMCID: PMC9559071 DOI: 10.1016/j.crneur.2021.100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/05/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022] Open
Abstract
Restless legs syndrome (RLS) is a common neurological disorder characterized by a sensorimotor condition, where patients feel an uncontrollable urge to move the lower limbs in the evening and/or during the night. RLS does not only have a profound impact on quality of life due to the disturbed night-time sleep, but there is growing evidence that untreated or insufficiently managed RLS might also cause cognitive changes in patients affected by this syndrome. It has been proposed that RLS is caused by alterations in the signal-to-noise ratio (SNR) and in dopamine (DA) neurotransmission in the nervous system. Based on this evidence, we propose the “SNR-DA hypothesis” as an explanation of how RLS could affect cognitive performance. According to this hypothesis, variations/reductions in the SNR underlie RLS-associated cognitive deficits, which follow an inverted U-shaped function: In unmedicated patients, low dopamine levels worsen the SNR, which eventually impairs cognition. Pharmacological treatment enhances DA levels in medicated patients, which likely improves/normalizes the SNR in case of optimal doses, thus restoring cognition to a normal level. However, overmedication might push patients past the optimal point on the inverted U-shaped curve, where an exaggerated SNR potentially impairs cognitive performance relying on cortical noise such as cognitive flexibility. Based on these assumptions of SNR alterations, we propose to directly measure neural noise via “1/f noise” and related metrics to use transcranial random noise stimulation (tRNS), a noninvasive brain stimulation method which manipulates the SNR, as a research tool and potential treatment option for RLS. Restless legs syndrome (RLS) is a common neurological disorder. RLS is caused by alterations in the SNR ratio and in DA neurotransmission. The SNR- DA hypothesis how RLS affects cognitive performance is presented.
Collapse
Affiliation(s)
- Lorenza S. Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
| | - Wenxin Zhang
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Moritz D. Brandt
- Department of Neurology, University Hospital, Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
- Biopsychology, Faculty of Psychology, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
- Corresponding author. Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany Schubertstrasse 42, D-01309, Dresden, Germany.
| |
Collapse
|
14
|
Silvestri R. The importance of diagnosing and treating iron deficiency in sleep disorders. Sleep Med Rev 2020; 51:101314. [PMID: 32229426 DOI: 10.1016/j.smrv.2020.101314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Rosalia Silvestri
- Sleep Medicine Center, UOSD of Neurophysiopathology and Movement Disorders, AOU G Martino, Department of Clinical and Experimental Medicine, University of Messina, Italy.
| |
Collapse
|