1
|
Smith DM, Terhune DB. Pedunculopontine-induced cortical decoupling as the neurophysiological locus of dissociation. Psychol Rev 2023; 130:183-210. [PMID: 35084921 PMCID: PMC10511303 DOI: 10.1037/rev0000353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mounting evidence suggests an association between aberrant sleep phenomena and dissociative experiences. However, no wake-sleep boundary theory provides a compelling explanation of dissociation or specifies its physiological substrates. We present a theoretical account of dissociation that integrates theories and empirical results from multiple lines of research concerning the domain of dissociation and the regulation of rapid eye movement (REM) sleep. This theory posits that individual differences in the circuitry governing the REM sleep promoting Pedunculopontine Nucleus and Laterodorsal Tegmental Nucleus determine the degree of similarity in the cortical connectivity profiles of wakefulness and REM sleep. We propose that a latent trait characterized by elevated dissociative experiences emerges from the decoupling of frontal executive regions due to a REM sleep-like aminergic/cholinergic balance. The Pedunculopontine-Induced Cortical Decoupling Account of Dissociation (PICDAD) suggests multiple fruitful lines of inquiry and provides novel insights. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Derek M. Smith
- Department of Psychology, Northwestern University
- Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine
| | | |
Collapse
|
2
|
Garcia-Rill E. Neuroepigenetics of arousal: Gamma oscillations in the pedunculopontine nucleus. J Neurosci Res 2019; 97:1515-1520. [PMID: 30916810 PMCID: PMC6764922 DOI: 10.1002/jnr.24417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 01/20/2023]
Abstract
Four major discoveries on the function of the pedunculopontine nucleus (PPN) have significantly advanced our understanding of the role of arousal in neurodegenerative disorders. The first was the finding that stimulation of the PPN-induced controlled locomotion on a treadmill in decerebrate animals, the second was the revelation of electrical coupling in the PPN and other arousal and sleep-wake control regions, the third was the determination of intrinsic gamma band oscillations in PPN neurons, and the last was the discovery of gene transcription resulting from the manifestation of gamma activity in the PPN. These discoveries have led to novel therapies such as PPN deep brain stimulation (DBS) for Parkinson's disease (PD), identified the mechanism of action of the stimulant modafinil, determined the presence of separate mechanisms underlying gamma activity during waking versus REM sleep, and revealed the presence of gene transcription during the manifestation of gamma band oscillations. These discoveries set the stage for additional major advances in the treatment of a number of disorders.
Collapse
Affiliation(s)
- Edgar Garcia-Rill
- Center for Translational Neuroscience (CTN), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
3
|
Nowacki A, Galati S, Ai-Schlaeppi J, Bassetti C, Kaelin A, Pollo C. Pedunculopontine nucleus: An integrative view with implications on Deep Brain Stimulation. Neurobiol Dis 2019; 128:75-85. [DOI: 10.1016/j.nbd.2018.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/22/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022] Open
|
4
|
Ricciardi L, Sarchioto M, Morgante F. Role of pedunculopontine nucleus in sleep-wake cycle and cognition in humans: A systematic review of DBS studies. Neurobiol Dis 2019; 128:53-58. [PMID: 30710676 DOI: 10.1016/j.nbd.2019.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Animal studies have demonstrated that the pedunculopontine nucleus (PPN) is involved in the control of posture and gait, and that it is also a key structure in controlling basic non-motor functions such as sleep, attention and arousal. In this systematic review we aimed to evaluate all available studies assessing the role of PPN on cognition, nocturnal sleep and alertness in humans. Finally, we attempted to define a model in which PPN acts as an interface structure between motor control and behavior. METHODS A systematic search of the computerized databases MEDLINE and PubMed was conducted to identify papers on PPN and cognitive functions, sleep and alertness. Key search terms included: 'PPN', 'arousal', 'sleep', 'cognition', 'memory', 'language', 'attention', 'alertness', 'PPN-DBS', 'Parkinson's and PPN', 'Parkinson's and PPN-DBS'. RESULTS Twelve studies met our inclusion criteria and were included. All of them involved PD patients implanted with unilateral or bilateral PPN-DBS, most patients had concomitant DBS of another anatomical structure (subthalamic nucleus or Zona incerta). There is a lack of consistent evidences confirming the effect of PPN-DBS on specific cognitive functions, alertness or sleep in PD. There is heterogeneity between and within surgical centres of study protocols especially regarding DBS targeting, parameters of stimulation and experimental methods. Moreover, the available studies are limited by the small sample size and the short follow-up time. It has been suggested that low frequency stimulation (25 Hz) has a better effect compared to the high frequency one (60-80 Hz) on alertness, however this needs to be confirmed in further studies. CONCLUSIONS PPN-DBS is a promising but yet an experimental procedure. PD represents an encouraging pathological model for future studies aiming to shade light on the role of PPN in cognition, attention and alertness in humans.
Collapse
Affiliation(s)
- Lucia Ricciardi
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Marianna Sarchioto
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom; Department of Neuroscience "Rita Levi Montalcini", University of Torino, Italy
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom; Department of Experimental and Clinical Medicine, University of Messina, Italy.
| |
Collapse
|
5
|
Thome J, Densmore M, Koppe G, Terpou B, Théberge J, McKinnon MC, Lanius RA. Back to the Basics: Resting State Functional Connectivity of the Reticular Activation System in PTSD and its Dissociative Subtype. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2019; 3:2470547019873663. [PMID: 32440600 PMCID: PMC7219926 DOI: 10.1177/2470547019873663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/09/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Brainstem and midbrain neuronal circuits that control innate, reflexive responses and arousal are increasingly recognized as central to the neurobiological framework of post-traumatic stress disorder (PTSD). The reticular activation system represents a fundamental neuronal circuit that plays a critical role not only in generating arousal but also in coordinating innate, reflexive responding. Accordingly, the present investigation aims to characterize the resting state functional connectivity of the reticular activation system in PTSD and its dissociative subtype. METHODS We investigated patterns of resting state functional connectivity of a central node of the reticular activation system, namely, the pedunculopontine nuclei, among individuals with PTSD (n = 77), its dissociative subtype (PTSD+DS; n = 48), and healthy controls (n = 51). RESULTS Participants with PTSD and PTSD+DS were characterized by within-group pedunculopontine nuclei resting state functional connectivity to brain regions involved in innate threat processing and arousal modulation (i.e., midbrain, amygdala, ventromedial prefrontal cortex). Critically, this pattern was most pronounced in individuals with PTSD+DS, as compared to both control and PTSD groups. As compared to participants with PTSD and controls, individuals with PTSD+DS showed enhanced pedunculopontine nuclei resting state functional connectivity to the amygdala and the parahippocampal gyrus as well as to the anterior cingulate and the ventromedial prefrontal cortex. No group differences emerged between PTSD and control groups. In individuals with PTSD+DS, state derealization/depersonalization was associated with reduced resting state functional connectivity between the left pedunculopontine nuclei and the anterior nucleus of the thalamus. Altered connectivity in these regions may restrict the thalamo-cortical transmission necessary to integrate internal and external signals at a cortical level and underlie, in part, experiences of depersonalization and derealization. CONCLUSIONS The present findings extend the current neurobiological model of PTSD and provide emerging evidence for the need to incorporate brainstem structures, including the reticular activation system, into current conceptualizations of PTSD and its dissociative subtype.
Collapse
Affiliation(s)
- Janine Thome
- Department of Psychiatry, Western
University, London, Ontario, Canada
- Department of Theoretical Neuroscience,
Central
Institute of Mental Health Mannheim, Medical
Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry,
Central
Institute of Mental Health Mannheim, Medical
Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maria Densmore
- Department of Psychiatry, Western
University, London, Ontario, Canada
- Imaging Division,
Lawson
Health Research Institute, London, Ontario,
Canada
| | - Georgia Koppe
- Department of Theoretical Neuroscience,
Central
Institute of Mental Health Mannheim, Medical
Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry,
Central
Institute of Mental Health Mannheim, Medical
Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Braeden Terpou
- Department of Psychiatry, Western
University, London, Ontario, Canada
- Department of Neuroscience, Western
University, London, Ontario, Canada
| | - Jean Théberge
- Department of Psychiatry, Western
University, London, Ontario, Canada
- Imaging Division,
Lawson
Health Research Institute, London, Ontario,
Canada
- Department of Medical Biophysics,
Western University, London, Ontario, Canada
| | - Margaret C. McKinnon
- Homewood Research Institute, Guelph,
Ontario, Canada
- Mood Disorder Programs, St. Joseph's
Healthcare, Hamilton, Ontario, Canada
- Department of Psychiatry and Behavioral
Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Ruth A. Lanius
- Department of Psychiatry, Western
University, London, Ontario, Canada
- Imaging Division,
Lawson
Health Research Institute, London, Ontario,
Canada
- Department of Neuroscience, Western
University, London, Ontario, Canada
- Homewood Research Institute, Guelph,
Ontario, Canada
| |
Collapse
|
6
|
Urbano FJ, Bisagno V, Mahaffey S, Lee SH, Garcia-Rill E. Class II histone deacetylases require P/Q-type Ca 2+ channels and CaMKII to maintain gamma oscillations in the pedunculopontine nucleus. Sci Rep 2018; 8:13156. [PMID: 30177751 PMCID: PMC6120910 DOI: 10.1038/s41598-018-31584-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022] Open
Abstract
Epigenetic mechanisms (i.e., histone post-translational modification and DNA methylation) play a role in regulation of gene expression. The pedunculopontine nucleus (PPN), part of the reticular activating system, manifests intrinsic gamma oscillations generated by voltage-dependent, high threshold N- and P/Q-type Ca2+ channels. We studied whether PPN intrinsic gamma oscillations are affected by inhibition of histone deacetylation. We showed that, a) acute in vitro exposure to the histone deacetylation Class I and II inhibitor trichostatin A (TSA, 1 μM) eliminated oscillations in the gamma range, but not lower frequencies, b) pre-incubation with TSA (1 μM, 90-120 min) also decreased gamma oscillations, c) Ca2+ currents (ICa) were reduced by TSA, especially on cells with P/Q-type channels, d) a HDAC Class I inhibitor MS275 (500 nM), and a Class IIb inhibitor Tubastatin A (150-500 nM), failed to affect gamma oscillations, e) MC1568, a HDAC Class IIa inhibitor (1 μM), blocked gamma oscillations, and f) the effects of both TSA and MC1568 were blunted by blockade of CaMKII with KN-93 (1 μM). These results suggest a cell type specific effect on gamma oscillations when histone deacetylation is blocked, suggesting that gamma oscillations through P/Q-type channels modulated by CaMKII may be linked to processes related to gene transcription.
Collapse
Affiliation(s)
- Francisco J Urbano
- Center for Translational Neuroscience, Department Neurobiology & Dev. Sci., University of Arkansas for Medical Sciences, Little Rock, AR, USA.,IFIBYNE, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica Bisagno
- ININFA, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Susan Mahaffey
- Center for Translational Neuroscience, Department Neurobiology & Dev. Sci., University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sang-Hun Lee
- Center for Translational Neuroscience, Department Neurobiology & Dev. Sci., University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, Department Neurobiology & Dev. Sci., University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
7
|
Boeckel GR, Ehrlich BE. NCS-1 is a regulator of calcium signaling in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1660-1667. [PMID: 29746899 DOI: 10.1016/j.bbamcr.2018.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Abstract
Neuronal Calcium Sensor-1 (NCS-1) is a highly conserved calcium binding protein which contributes to the maintenance of intracellular calcium homeostasis and regulation of calcium-dependent signaling pathways. It is involved in a variety of physiological cell functions, including exocytosis, regulation of calcium permeable channels, neuroplasticity and response to neuronal damage. Over the past 30 years, continuing investigation of cellular functions of NCS-1 and associated disease states have highlighted its function in the pathophysiology of several disorders and as a therapeutic target. Among the diseases that were found to be associated with NCS-1 are neurological disorders such as bipolar disease and non-neurological conditions such as breast cancer. Furthermore, alteration of NCS-1 expression is associated with substance abuse disorders and severe side effects of chemotherapeutic agents. The objective of this article is to summarize the current body of evidence describing NCS-1 and its interactions on a molecular and cellular scale, as well as describing macroscopic implications in physiology and medicine. Particular attention is paid to the role of NCS-1 in development and prevention of chemotherapy induced peripheral neuropathy (CIPN).
Collapse
Affiliation(s)
- Göran R Boeckel
- Department of Pharmacology, Yale University, New Haven, CT, United States; Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, CT, United States; Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| |
Collapse
|
8
|
Kovalzon VM. Functional neurochemistry of sleep—waking cycle in pathogenesis of neurological diseases. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:5-11. [DOI: 10.17116/jnevro2017117425-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Luster BR, Urbano FJ, Garcia-Rill E. Intracellular mechanisms modulating gamma band activity in the pedunculopontine nucleus (PPN). Physiol Rep 2016; 4:4/12/e12787. [PMID: 27354537 PMCID: PMC4923228 DOI: 10.14814/phy2.12787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/11/2016] [Indexed: 02/04/2023] Open
Abstract
The pedunculopontine nucleus is a part of the reticular activating system, and is active during waking and REM sleep. Previous results showed that all PPN cells tested fired maximally at gamma frequencies when depolarized. This intrinsic membrane property was shown to be mediated by high‐threshold N‐ and P/Q‐type Ca2+ channels. Recent studies show that the PPN contains three independent populations of neurons which can generate gamma band oscillations through only N‐type channels, only P/Q‐type channels, or both N‐ and P/Q‐type channels. This study investigated the intracellular mechanisms modulating gamma band activity in each population of neurons. We performed in vitro patch‐clamp recordings of PPN neurons from Sprague–Dawley rat pups, and applied 1‐sec ramps to induce intrinsic membrane oscillations. Our results show that there are two pathways modulating gamma band activity in PPN neurons. We describe populations of neurons mediating gamma band activity through only N‐type channels and the cAMP/PKA pathway (presumed “REM‐on” neurons), through only P/Q‐type channels and the CaMKII pathway (presumed “Wake‐on” neurons), and a third population which can mediate gamma activity through both N‐type channels and cAMP/PK and P/Q‐type channels and CaMKII (presumed “Wake/REM‐on” neurons). These novel results suggest that PPN gamma oscillations are modulated by two independent pathways related to different Ca2+ channel types.
Collapse
Affiliation(s)
- Brennon R Luster
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
10
|
Garcia-Rill E, Virmani T, Hyde J, D’Onofrio S, Mahaffey S. Arousal and the control of perception and movement. CURRENT TRENDS IN NEUROLOGY 2016; 10:53-64. [PMID: 28690375 PMCID: PMC5501251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent discoveries on the nature of the activity generated by the reticular activating system (RAS) suggest that arousal is much more involved in perception and movement than previously thought. The RAS is not simply an amorphous, unspecific region but rather a distinct group of nuclei with specific cell and transmitter types that control waking and modulate such processes as perception and movement. Thus, disturbances in the RAS will affect a number of neurological disorders. The discovery of gamma band activity in the RAS determined that high threshold calcium channels are responsible for generating gamma band activity in the RAS. Results showing that waking is mediated by CaMKII modulation of P/Q-type channels and REM sleep is modulated by cAMP/PK modulation of N-type channels points to different intracellular pathways influencing each state. Few studies address these important breakthroughs. Novel findings also show that the same primate RAS neurons exhibiting activity in relation to arousal are also involved in locomotion. Moreover, deep brain stimulation of this region, specifically the pedunculopontine nucleus (PPN DBS), in Parkinson's disease has salutary effects on movement, sleep, and cognition. Gamma oscillations appear to participate in sensory perception, problem solving, and memory, and coherence at these frequencies may occur at cortical or thalamocortical levels. However, rather than participating in the temporal binding of sensory events, gamma band activity generated in the RAS may help stabilize coherence related to arousal, providing a stable activation state during waking, and relay such activation to the cortex. Continuous sensory input will thus induce gamma band activity in the RAS to participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our perceptions and actions. Such a role has received little attention but promises to help understand and treat a number of neurological disorders.
Collapse
Affiliation(s)
- E. Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| | - T. Virmani
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - J.R. Hyde
- Department of Psychiatry and Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA
| | - S. D’Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| | - S. Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
11
|
Garcia-Rill E, Luster B, D’Onofrio S, Mahaffey S, Bisagno V, Urbano FJ. Pedunculopontine arousal system physiology - Deep brain stimulation (DBS). Sleep Sci 2015; 8:153-61. [PMID: 26779322 PMCID: PMC4688589 DOI: 10.1016/j.slsci.2015.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/03/2015] [Accepted: 09/05/2015] [Indexed: 12/19/2022] Open
Abstract
This review describes the wake/sleep symptoms present in Parkinson׳s disease, and the role of the pedunculopontine nucleus in these symptoms. The physiology of PPN cells is important not only because it is a major element of the reticular activating system, but also because it is a novel target for deep brain stimulation in the treatment of gait and postural deficits in Parkinson׳s disease. A greater understanding of the physiology of the target nuclei within the brainstem and basal ganglia, amassed over the past decades, has enabled increasingly better patient outcomes from deep brain stimulation for movement disorders.
Collapse
Key Words
- Basal forebrain
- Calcium channels
- DBS, deep brain stimulation
- EEG, electroencephalogram
- Gamma band activity
- LC, locus coeruleus
- Lateral hypothalamus
- Orexin
- PD, Parkinson׳s disease
- PGO, ponto-geniculo-occipital
- PPN, pedunculopontine nucleus
- RAS, reticular activating system
- REM, rapid eye movement
- SN, substantia nigra
- STN, subthalamic nucleus
- SubCD, subcoeruleus nucleus dorsalis
- Tuberomammillary
Collapse
Affiliation(s)
- Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brennon Luster
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stasia D’Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Susan Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Veronica Bisagno
- IFIBYNE-CONICET and ININFA-CONICET, University of Buenos Aires, Argentina
| | | |
Collapse
|
12
|
Datta S. Mysteries of pedunculopontine nucleus physiology: Towards a deeper understanding of arousal and neuropsychiatric disorders. Sleep Sci 2015; 8:53-5. [PMID: 26483944 PMCID: PMC4608880 DOI: 10.1016/j.slsci.2015.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|