1
|
Jin H, Xu G, Lu Y, Niu C, Zhang X, Kan T, Cao J, Yang X, Cheng Q, Zhang J, Dong J. Fluoxetine partially alleviates inflammation in the kidney of socially stressed male C57 BL/6 mice. FEBS Open Bio 2023; 13:1723-1736. [PMID: 37400956 PMCID: PMC10476569 DOI: 10.1002/2211-5463.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stress-related illnesses are linked to the onset and progression of renal diseases and depressive disorders. To investigate stress-induced changes in the renal transcriptome associated with the development of depressive behaviors, we generated here a chronic social defeat stress (CSDS) model of C57 BL/6 male mice and then performed RNA sequencing of the kidneys to obtain an inflammation-related transcriptome. Administration of the antidepressant drug fluoxetine (10 mg·kg-1 ·day-1 ) during CSDS induction could partially alleviate renal inflammation and reverse CSDS-induced depression-like behaviors. Moreover, fluoxetine also modulated gene expression of stress-related hormone receptors, including prolactin and melanin-concentrating hormone. These results suggest that CSDS can induce gene expression changes associated with inflammation in the kidney of C57 BL/6 male mice, and this inflammation can be treated effectively by fluoxetine.
Collapse
Affiliation(s)
- Hailong Jin
- The Third CenterPLA General HospitalBeijingChina
| | - Guanglei Xu
- Beijing Institute of Basic Medical SciencesChina
| | - Yuchen Lu
- Beijing Institute of Basic Medical SciencesChina
| | - Chunxiao Niu
- Beijing Institute of Basic Medical SciencesChina
| | | | - Tongtong Kan
- Beijing Institute of Basic Medical SciencesChina
| | - Junxia Cao
- Beijing Institute of Basic Medical SciencesChina
| | - Xiqin Yang
- Beijing Institute of Basic Medical SciencesChina
| | | | - Jiyan Zhang
- Beijing Institute of Basic Medical SciencesChina
| | - Jie Dong
- Beijing Institute of Basic Medical SciencesChina
| |
Collapse
|
2
|
Lu J, Zhao J, Balesar R, Fronczek R, Zhu QB, Wu XY, Hu SH, Bao AM, Swaab DF. Sexually Dimorphic Changes of Hypocretin (Orexin) in Depression. EBioMedicine 2017; 18:311-319. [PMID: 28377228 PMCID: PMC5405188 DOI: 10.1016/j.ebiom.2017.03.043] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 11/27/2022] Open
Abstract
Background Neurophysiological and behavioral processes regulated by hypocretin (orexin) are severely affected in depression. However, alterations in hypocretin have so far not been studied in the human brain. We explored the hypocretin system changes in the hypothalamus and cortex in depression from male and female subjects. Methods We quantified the differences between depression patients and well-matched controls, in terms of hypothalamic hypocretin-1 immunoreactivity (ir) and hypocretin receptors (Hcrtr-receptors)-mRNA in the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex. In addition, we determined the alterations in the hypocretin system in a frequently used model for depression, the chronic unpredictable mild stress (CUMS) rat. Results i) Compared to control subjects, the amount of hypocretin-immunoreactivity (ir) was significantly increased in female but not in male depression patients; ii) hypothalamic hypocretin-ir showed a clear diurnal fluctuation, which was absent in depression; iii) male depressive patients who had committed suicide showed significantly increased ACC Hcrt-receptor-2-mRNA expression compared to male controls; and iv) female but not male CUMS rats showed a highly significant positive correlation between the mRNA levels of corticotropin-releasing hormone and prepro-hypocretin in the hypothalamus, and a significantly increased Hcrt-receptor-1-mRNA expression in the frontal cortex compared to female control rats. Conclusions The clear sex-related change found in the hypothalamic hypocretin-1-ir in depression should be taken into account in the development of hypocretin-targeted therapeutic strategies. Hypocretin (orexin) changes were studied in human postmortem brain in depression. A clear sex-related change was found in the hypothalamic hypocretin-1-immunoreactivity in depression. A rat depression model did not reflect the changes in the hypocretin system in the human brain in depression.
The stress systems of depressed patients are put into a higher gear by genetic and developmental factors. Over-reaction of these systems to stressful environmental situations makes people vulnerable to depression and suicide. This is the first postmortem study on changes in a relatively novel stress system in depression, consisting of the hypothalamic hypocretin neurons and hypocretin receptors in the prefrontal cortex. A clear sex-related change was found in the hypothalamic hypocretin-1-immunoreactivity in depression. Evaluation of the hypocretin system in a frequently used depression animal model, i.e. chronic unpredictable mild stress rats, did not replicate changes found in the hypocretin systems in the human brain in depression.
Collapse
Affiliation(s)
- Jing Lu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Mental Disorder's Management, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; Zhejiang Province Key Laboratory of Mental Disorder's Management, Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine
| | - Juan Zhao
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Rawien Balesar
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Qiong-Bin Zhu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Mental Disorder's Management, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Xue-Yan Wu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Mental Disorder's Management, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Shao-Hua Hu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Mental Disorder's Management, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; Zhejiang Province Key Laboratory of Mental Disorder's Management, Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine
| | - Ai-Min Bao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Mental Disorder's Management, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China.
| | - Dick F Swaab
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Mental Disorder's Management, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| |
Collapse
|