1
|
Novakoski PV, de Vitt MG, Molosse VL, Xavier ACH, Wagner R, Klein B, Milarch CF, Leonardi LE, Kozloski GV, Vedovatto M, da Silva AS. The addition of curcumin to the diet of post-weaning dairy calves: effects on ruminal fermentation, immunological, and oxidative responses. Trop Anim Health Prod 2024; 56:142. [PMID: 38662082 DOI: 10.1007/s11250-024-03993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Incorporating Curcumin into animal diets holds significant promise for enhancing both animal health and productivity, with demonstrated positive impacts on antioxidant activity, anti-microbial responses. Therefore, this study aimed to determine whether adding Curcumin to the diet of dairy calves would influence ruminal fermentation, hematologic, immunological, oxidative, and metabolism variables. Fourteen Jersey calves were divided into a control group (GCON) and a treatment group (GTRA). The animals in the GTRA received a diet containing 65.1 mg/kg of dry matter (DM) Curcumin (74% purity) for an experimental period of 90 days. Blood samples were collected on days 0, 15, 45, and 90. Serum levels of total protein and globulins were higher in the GTRA group (P < 0.05) than the GCON group. In the GTRA group, there was a reduction in pro-inflammatory cytokines (IL-1ß and IL-6) (P < 0.05) and an increase in IL-10 (which acts on anti-inflammatory responses) (P < 0.05) when compared to the GCON. There was a significantly higher (P < 0.05) concentration of immunoglobulin A (IgA) in the serum of the GTRA than the GCON. A Treatment × Day interaction was observed for haptoglobin levels, which were higher on day 90 in animals that consumed Curcumin than the GCON (P < 0.05). The catalase and superoxide dismutase activities were significantly higher (P < 0.05) in GTRA, reducing lipid peroxidation when compared to the GCONT. Hematologic variables did not differ significantly between groups. Among the metabolic variables, only urea was higher in the GTRA group when compared to the GCON. Body weight and feed efficiency did not differ between groups (meaning the percentage of apparent digestibility of dry matter, crude protein, and acid detergent fiber (ADF) and neutral detergent fiber (NDF). There was a tendency (P = 0.09) for treatment effect and a treatment x day interaction (P = 0.05) for levels of short-chain fatty acids in rumen fluid, being lower in animals that consumed curcumin. There was a treatment vs. day interaction (P < 0.05) for the concentration of acetate in the rumen fluid (i.e., on day 45, had a reduction in acetate; on day 90, values were higher in the GTRA group when compared to the GCON). We conclude that there was no evidence in the results from this preliminary trial that Curcumin in the diet of dairy calves interfered with feed digestibility. Curcumin may have potential antioxidant, anti-inflammatory, and immune effects that may be desirable for the production system of dairy calves.
Collapse
Affiliation(s)
- Pablo Vinicius Novakoski
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó - SC, Brazil
| | - Maksuel Gatto de Vitt
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó - SC, Brazil
| | - Vitor Luiz Molosse
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó - SC, Brazil
| | | | - Roger Wagner
- Department of Food Science, Universidade Federal de Santa Maria (UFSM), Santa Maria , Brazil
| | - Bruna Klein
- Department of Animal Science, UDESC, R. Beloni Trombeta Zanin, 680E - Santo Ant?nio, Chapecó - SC, 89815-630, Brazil
| | | | | | | | - Marcelo Vedovatto
- Dean Lee Research and Extension Center, Louisiana State University, Alexandria, LA, 71302, USA
| | - Aleksandro S da Silva
- Department of Animal Science, UDESC, R. Beloni Trombeta Zanin, 680E - Santo Ant?nio, Chapecó - SC, 89815-630, Brazil.
| |
Collapse
|
2
|
Chen Y, Liu L, Yu L, Li S, Zhu N, You J. Curcumin Supplementation Improves Growth Performance and Anticoccidial Index by Improving the Antioxidant Capacity, Inhibiting Inflammatory Responses, and Maintaining Intestinal Barrier Function in Eimeria tenella-Infected Broilers. Animals (Basel) 2024; 14:1223. [PMID: 38672370 PMCID: PMC11047685 DOI: 10.3390/ani14081223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
This study was conducted to investigate the effects of dietary curcumin supplementation on growth performance, anticoccidial index, antioxidant capacity, intestinal inflammation, and cecum microbiota in broilers infected with Eimeria tenella. A total of 234 one-day-old broilers were categorized into three treatments, with six replicates per treatment containing 13 broilers each. The three treatments included the control group, Eimeria tenella group, and Eimeria tenella + curcumin (200 mg/kg) group. The feeding trial lasted for 42 days, during which the broilers were orally administered with 0.9% saline or 5 × 104Eimeria tenella oocysts on day 14 of the study. On day 17 and day 21, one bird per replicate was selected for slaughtering. Results indicated an increased survival rate and anticoccidial index and improved productive performance in coccidia-infected broilers with curcumin supplementation. Furthermore, curcumin enhanced the serum antioxidant capacity in Eimeria tenella-infected broilers, evidenced by increased serum catalase activity (3d, 7d), as well as decreased malondialdehyde level (3d, 7d) and nitric oxide synthase activity (7d) (p < 0.05). Curcumin also improved intestinal inflammation and barrier function, evidenced by the downregulation of interleukin (IL)-1β (3d, 7d), TNF-alpha (TNF-α) (3d, 7d), and IL-2 (7d) and the up-regulated mRNA levels of claudin-1 (7d), zonula occludens (ZO-1; 3d, 7d), and occludin (3d, 7d) in the ceca of infected broilers (p < 0.05). Eimeria tenella infection significantly disrupted cecum microbial balance, but curcumin did not alleviate cecum microbial disorder in broilers infected with Eimeria tenella. Collectively, curcumin supplementation enhanced growth performance and anticoccidial index in Eimeria tenella-infected broilers via improving antioxidant ability and cecum inflammation without affecting cecum microbiota.
Collapse
Affiliation(s)
- Yan Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| | - Liheng Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Longfei Yu
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| | - Shuo Li
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| | - Nianhua Zhu
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| |
Collapse
|
3
|
Chen P, Li S, Zheng L, Wang Z, He Y, Liu K, Li M, Wang Y, Shaukat A, Li S, Huang S, Jian F. Effects of Radix dichroae extract supplementation on growth performance, oocysts output and gut microbiota in growing lambs with coccidiosis. Vet Res Commun 2024; 48:279-290. [PMID: 37667094 DOI: 10.1007/s11259-023-10209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
Coccidiosis is an intestinal protozoan disease of sheep, that causes substantial economic losses in the industry due to its intestinal protozoan origins. Many anti-protozoan drugs including ionophores, triazines, and sulfonamides have been widely used to treat sheep coccidiosis. Still, anticoccidial resistance and drug residues in edible tissues have prompted an urgent search for alternatives. In this study, the anti-coccidial effectiveness of the Radix dichroae extract was compared to that of the conventional anti-coccidial drug diclazuril. Here, eighteen 45-day-old lambs naturally-infected with Eimeria spp. were randomly allocated in three groups: control group, Radix dichroae extract group and diclazuril group. The results showed that the body weight gain (BWG) during the treatment and withdrawal periods was considerably improved in the coccidiosis-infected sheep treated with Radix dichroae extract and diclazuril compared to the control group, respectively. Additionally, the Radix dichroae extract and diclazuril had fewer oocysts per gram (OPG) than the control group, showing similar anti-coccidial effects on days 14, 21, 28, 35 and 78, respectively. Furthermore, Radix dichroae extract and diclazuril treatment altered the structure and composition of gut microbiota, promoting the relative abundance of Actinobacteriota, Firmicutes, Alistipes, and Bifidobacterium, while decreasing the abundance of Bacteroidota, Marinilaceae, Helicobacteraceae, and Prevotella. Moreover, Spearman's correlation analysis further revealed a correlation between the OPG and BWG and gut microorganisms. Collectively, the results indicated that Radix dichroae extract had similar anti-coccidial effects as diclazuril, and could regulate gut microbiota balance in growing lambs.
Collapse
Affiliation(s)
- Pan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shijie Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lijun Zheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhanming Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanfeng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kaili Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Manman Li
- Henan Zhongyang Animal Husbandry Co. LTD, Kaifeng, 475317, China
| | - Yingmin Wang
- Henan Zhongyang Animal Husbandry Co. LTD, Kaifeng, 475317, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, China
| | - Senyang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Zhengzhou Key Laboratory of Research and Evaluation of Traditional Chinese Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Ashraf A, Shahardar RA, Wani ZA, Bulbul KH, Allaie IM. Comparative efficacy of allopathic and herbal drugs in sheep naturally infected with coccidiosis. Res Vet Sci 2023; 164:105001. [PMID: 37690328 DOI: 10.1016/j.rvsc.2023.105001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/14/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Development of anticoccidial resistance and concerns of drug residues have prompted the evaluation of alternatives to allopathic drugs. In current study, anticoccidial effect of amprolium was compared with that of Curcuma longa and Zingiber officinale. Ninety (90) sheep, naturally infected with Eimeria spp. and having a minimum oocyst per gram (OPG) count of faeces above 5000 were randomly selected and divided into six groups of 15 animals each. Animals were supplemented with amprolium @ 62.50 mg/kg body weight (bw) (GI), turmeric @ 200 and 300 mg/kg bw (GII and GIII) and ginger @ 200 and 300 mg/kg bw (GIV and GV), orally for 7 days and GVI animals were kept as untreated infected control. Faecal samples were collected on '0' day before treatment and on 8th, 14th, 21st and 28th day after starting treatment and evaluated using Faecal oocyst count reduction test (FOCRT). The efficacy of amprolium was 93.18%, 96.82%, 95.56% and 95.80% on 8th, 14th, 21st and 28th day, after starting treatment. Turmeric @200 mg/kg b.w. showed efficacy of 41.49%, 52.37%, 61.47% and 60.08% and turmeric @ 300 mg/kg bw was 44.92%, 54.32%, 64.21% and 61.95% effective on 8th, 14th, 21st and 28th day, respectively. Ginger @200 mg/kg bw showed efficacy of 38.51%, 53.48%, 55.38% and 55.53% and ginger @ 300 mg/kg bw was 39.65%, 54.81%, 57.18% and 58.22% effective on 8th,14th, 21st and 28th day, respectively. The results justify use of amprolium for clinical coccidiosis while Curcuma longa and Gingiber officinale could be used as natural prophylactic alternatives.
Collapse
Affiliation(s)
- Aiman Ashraf
- Division of Veterinary Parasitology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190006, India.
| | - Rafiq Ahmad Shahardar
- Division of Veterinary Parasitology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190006, India
| | - Zahoor Ahmad Wani
- Division of Veterinary Parasitology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190006, India
| | - Kamal Hashan Bulbul
- Division of Veterinary Parasitology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190006, India
| | - Idrees Mehraj Allaie
- Division of Veterinary Parasitology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190006, India
| |
Collapse
|
5
|
Belanche A, Arturo-Schaan M, Leboeuf L, Yáñez-Ruiz D, Martín-García I. Early life supplementation with a natural blend containing turmeric, thymol, and yeast cell wall components to optimize rumen anatomical and microbiological development and productivity in dairy goats. J Dairy Sci 2023:S0022-0302(23)00267-9. [PMID: 37225586 DOI: 10.3168/jds.2022-22621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/20/2023] [Indexed: 05/26/2023]
Abstract
Ruminants are born with an anatomically, microbiologically, and metabolically immature rumen. Optimizing the rearing of young ruminants represent an important challenge in intensive dairy farms. Therefore, the objective of this study was to evaluate the effects of dietary supplementation of young ruminants with a plant extract blend containing turmeric, thymol, and yeast cell wall components such as mannan oligosaccharides and β-glucans. One hundred newborn female goat kids were randomly allocated to 2 experimental treatments, which were unsupplemented (CTL) or supplemented with the blend containing plant extracts and yeast cell wall components (PEY). All animas were fed with milk replacer, concentrate feed, and oat hay, and were weaned at 8 wk of age. Dietary treatments lasted from wk 1 to 22 and 10 animals from each treatment were randomly selected to monitor feed intake, digestibility, and health-related indicators. These latter animals were euthanized at wk 22 of age to study the rumen anatomical, papillary, and microbiological development, whereas the remaining animals were monitored for reproductive performance and milk yield during the first lactation. Results indicated that PEY supplementation did not lead to feed intake or health issues because PEY animals tended to have a higher concentrate intake and lower diarrheal incidence than CTL animals. No differences between treatments were noted in terms of feed digestibility, rumen microbial protein synthesis, health-related metabolites, or blood cell counts. Supplementation with PEY promoted a higher rumen empty weight, and rumen relative proportion to the total digestive tract weight, than CTL animals. This was accompanied with a higher rumen papillary development in terms of papillae length and surface area in the cranial ventral and caudal ventral sacs, respectively. The PEY animals also had higher expression of the MCT1 gene, which is related to volatile fatty acid absorption by the rumen epithelium, than CTL animals. The antimicrobial effects of the turmeric and thymol could explain the decreased the rumen absolute abundance of protozoa and anaerobic fungi. This antimicrobial modulation led to a change in the bacterial community structure, a decrease in the bacteria richness, and to the disappearance (i.e., Prevotellaceae_UCG-004, Bacteroidetes_BD2-2, Papillibacter, Schwartzia, and Absconditabacteriales_SR1) or decline of certain bacterial taxa (i.e., Prevotellaceae_NK3B31_group, and Clostridia_UCG-014). Supplementation with PEY also decreased the relative abundance of fibrolytic (i.e., Fibrobacter succinogenes and Eubacterium ruminantium) and increased amylolytic bacteria (Selenomonas ruminantium). Although these microbial changes were not accompanied with significant differences in the rumen fermentation, this supplementation led to increased body weight gain during the preweaning period, higher body weight during the postweaning period, and higher fertility rate during the first gestation. On the contrary, no residual effects of this nutritional intervention were noted on the milk yield and milk components during the first lactation. In conclusion, supplementation with this blend of plant extracts and yeast cell wall component in early life could be considered as a sustainable nutritional strategy to increase body weight gain and optimize the rumen anatomical and microbiological development in young ruminants, despite having minor productive implications later in life.
Collapse
Affiliation(s)
- Alejandro Belanche
- Estación Experimental del Zaidín (CSIC), Prof. Albareda 1, 18008, Granada, Spain; Department of Animal Production and Food Sciences, University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain.
| | | | - Lara Leboeuf
- CCPA group, ZA Bois de Teillay, 35150, Janzé, France
| | - David Yáñez-Ruiz
- Estación Experimental del Zaidín (CSIC), Prof. Albareda 1, 18008, Granada, Spain
| | | |
Collapse
|
6
|
Martínez-González JDJ, Ríos-Morales SL, Guevara-Flores A, Ramos-Godinez MDP, López-Saavedra A, Rendón JL, Del Arenal Mena IP. Evaluating the effect of curcumin on the metacestode of Taenia crassiceps. Exp Parasitol 2022; 239:108319. [PMID: 35777452 DOI: 10.1016/j.exppara.2022.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
Abstract
Curcumin, a curcuminoid present in the rhizome of the plant Curcuma longa has multiple pharmacological effects including anticarcinogenic and anti-inflammatory properties. This work evaluates the anthelmintic effect of the curcumin molecule (98% pure) on Taenia crassiceps cysticerci viability in vitro. Cysticerci incubated in the presence of increasing concentrations of curcumin showed a dose-dependent mortality correlated with a significant increase in the production of reactive oxygen species and a partial inhibition of thioredoxin-glutathione reductase, the only disulfide reductase present in these parasites. At 500 μM curcumin, a 100% of cysticerci lethality was obtained after 2 h of treatment. These results suggest the curcumin-induced oxidative stress could be in the origin of the anthelminthic effect of curcumin. Mice with cysticerci were injected intraperitoneally with 20, 40, or 60 mM curcumin daily for 30 days. A decrease in the burden of cysticerci (46%) was observed with a 60 mM dose of curcumin, supporting this compound as a potential anthelmintic drug.
Collapse
Affiliation(s)
- José de Jesús Martínez-González
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - Sandra Lizeth Ríos-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - Alberto Guevara-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - María Del Pilar Ramos-Godinez
- Unidad de Aplicaciones Avanzadas en Microscopía, Instituto Nacional de Cancerología, Red de Apoyo a la Investigación (RAI), 14080, Mexico City, Mexico
| | - Alejandro López-Saavedra
- Unidad de Aplicaciones Avanzadas en Microscopía, Instituto Nacional de Cancerología, Red de Apoyo a la Investigación (RAI), 14080, Mexico City, Mexico
| | - Juan Luis Rendón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - Irene Patricia Del Arenal Mena
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico.
| |
Collapse
|
7
|
Bangoura B, Bhuiya MAI, Kilpatrick M. Eimeria infections in domestic and wild ruminants with reference to control options in domestic ruminants. Parasitol Res 2022; 121:2207-2232. [PMID: 35680677 DOI: 10.1007/s00436-022-07564-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
Eimeria infections are commonly seen in a variety of mammalian hosts. This genus of unicellular sporozoan parasites causes significant disease (coccidiosis) in different livestock species leading to economic losses for agricultural producers. Especially the production of cattle, sheep, and goat is strongly dependent on efficient coccidiosis control. However, many other livestock hosts like, e.g., camelids, bison, rabbits, and guinea pigs may benefit from reduced parasite transmission and targeted control measures as well. Besides livestock, also wildlife and pet animals may be affected by Eimeria infections resulting in clinical or subclinical coccidiosis. Wildlife herd health is crucial to conservation efforts, and Eimeria species are a prevalent pathogen in multiple mammalian wildlife species. This review aims to highlight the epidemiology of mammalian Eimeria infections in both wild and domestic ruminants, including host specificity, transmission, survival of environmental oocysts, occurrence, and risk factors for infection. Understanding general drivers of Eimeria infection may support adequate livestock and wildlife management. Furthermore, control options for livestock with reference to management factors, drug application, and alternative approaches are discussed. The goal of Eimeria control should be to reduce pathogen transmission in different host species and to improve sustainable livestock production. Controlling Eimeria infections in livestock is important considering both their animal welfare impact and their high economic relevance.
Collapse
Affiliation(s)
- Berit Bangoura
- Department of Veterinary Sciences, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82070, USA.
| | - Md Ashraful Islam Bhuiya
- Department of Veterinary Sciences, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82070, USA
| | - Michelle Kilpatrick
- Department of Veterinary Sciences, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82070, USA
| |
Collapse
|
8
|
Sultan K. Effect of Curcuma longa supplementation in post-weaning lambs
ration on performance, carcass and meat quality. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/149003/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Blomstrand BM, Enemark HL, Steinshamn H, Aasen IM, Johanssen JRE, Athanasiadou S, Thamsborg SM, Sørheim KM. Administration of spruce bark (Picea abies) extracts in young lambs exhibits anticoccidial effects but reduces milk intake and body weight gain. Acta Vet Scand 2022; 64:10. [PMID: 35461282 PMCID: PMC9034609 DOI: 10.1186/s13028-022-00629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/30/2022] [Indexed: 11/27/2022] Open
Abstract
Background Eimeria spp. are widespread apicomplexan parasites known to cause coccidiosis in livestock, resulting in reduced animal welfare and productivity, particularly in sheep. The treatment options are limited, and there is an emerging development of resistance against registered pharmaceuticals. Spruce bark is rich in plant secondary metabolites (PSM), such as condensed tannins, which are bioactive compounds previously shown to have antiparasitic activity. Here, we examined the anticoccidial properties of bark extract of Norway spruce (Picea abies) against a field isolate of ovine Eimeria spp. by treating Eimeria-infected pre-ruminant lambs with water-extracted bark daily for 12 days. We hypothesised that the bark extract would reduce the faecal oocyst excretion and, consequently, the severity of diarrhoea. Results Oral administration of spruce bark extract significantly reduced the excretion of Eimeria oocysts in milk-fed lambs post treatment till the end of the trial 22 days post infection. This difference in oocyst excretion between the treated and the untreated infected animals increased with time. Compared to the untreated and the sham-infected control group, the group treated with bark extract had softer faeces and reduced milk intake during the treatment period. After discontinuing the treatment, the treated animals got a more solid and formed faeces compared to that of the untreated control group, and the milk intake increased to the level of the sham-infected, untreated control group. The bark extract treated animals had a lower body weight and a lower mean daily body weight gain throughout the whole duration of the experiment. Conclusions Bark extract from Norway spruce showed marked anticoccidial properties by reducing the faecal oocyst count and associated diarrhoea in young lambs. Simultaneously we experienced detrimental effects of the treatment, displayed as reduced feed intake and daily body weight gain. Therefore, we suggest conducting similar studies with lower bark extract dosage to explore the possibilities of a better trade-off to reduce the negative impact while maintaining the antiparasitic effect. Supplementary Information The online version contains supplementary material available at 10.1186/s13028-022-00629-y.
Collapse
|
10
|
Campbell DL, Gouvêa VN, Smithyman MM, Batistel F, Cooke RF, Duff GC. Effects of supplementation with a bioactive phyto-compound on intake, growth performance, and health of newly received feedlot calves. Transl Anim Sci 2021. [DOI: 10.1093/tas/txab149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Dayna L Campbell
- Department of Animal and Range Sciences, Clayton Livestock Research Center, New Mexico State University, Clayton, NM 88415, USA
| | - Vinícius N Gouvêa
- Department of Animal and Range Sciences, Clayton Livestock Research Center, New Mexico State University, Clayton, NM 88415, USA
| | - Mackenzie M Smithyman
- Department of Animal and Range Sciences, Clayton Livestock Research Center, New Mexico State University, Clayton, NM 88415, USA
| | - Fernanda Batistel
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Reinaldo F Cooke
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Glenn C Duff
- Department of Animal and Range Sciences, Clayton Livestock Research Center, New Mexico State University, Clayton, NM 88415, USA
| |
Collapse
|
11
|
Sánchez N, Lee-Rangel HA, Martínez-Cortés I, Mendoza GD, Hernández PA, Espinoza E, Vazque Valladolid A, Flores Ramírez R, Roque-Jimenez A, Campillo-Navarro M, Relling AE. A polyherbal phytogenic additive improved growth performance, health, and immune response in dairy calves. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1967296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Nallely Sánchez
- Centro de Biociencias, Facultad de Agronomía y Veterinaria, CIACYT Laboratorio Nacional. Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Hector A. Lee-Rangel
- Centro de Biociencias, Facultad de Agronomía y Veterinaria, CIACYT Laboratorio Nacional. Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - German D. Mendoza
- Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, Mexico
| | | | - Enrique Espinoza
- Universidad Autónoma del Estado de México, Estado de México, Mexico
| | - Anayeli Vazque Valladolid
- Centro de Biociencias, Facultad de Agronomía y Veterinaria, CIACYT Laboratorio Nacional. Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Rogelio Flores Ramírez
- Centro de Biociencias, Facultad de Agronomía y Veterinaria, CIACYT Laboratorio Nacional. Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Alejandro Roque-Jimenez
- Centro de Biociencias, Facultad de Agronomía y Veterinaria, CIACYT Laboratorio Nacional. Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Alejandro E. Relling
- Department of Animal Sciences, OARDC, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
12
|
Jaguezeski AM, Gündel SS, Favarin FR, Gündel A, Souza CF, Baldissera MD, Cazarotto CC, Volpato A, Fortuoso BF, Ourique AF, Da Silva AS. Low-dose curcumin-loaded Eudragit L-100-nanocapsules in the diet of dairy sheep increases antioxidant levels and reduces lipid peroxidation in milk. J Food Biochem 2019; 43:e12942. [PMID: 31368562 DOI: 10.1111/jfbc.12942] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/26/2019] [Accepted: 05/12/2019] [Indexed: 12/20/2022]
Abstract
The main objective of this study was to evaluate whether the addition of curcumin-loaded nanocapsules (prepared and characterized) in the diets of dairy sheep improved milk quality. The nanocapsules were prepared using two polymers: poly-ε-caprolactone (PCL) and Eudragit L-100. The nanocapsules contained 0.25 mg/ml (Nano-Eudragit L-100) and 2 mg/ml (Nano-PCL) of curcumin. Dairy sheep were divided into four groups: A (control), B (30 mg free curcumin/kg concentrate), C (3 mg Nano-PCL/kg concentrate), and D (3 mg Nano-Eudragit/kg concentrate). We observed that the number of total leukocytes and serum globulin levels were lower in Group D than in the control (Group A) (p < 0.05). Antioxidant capacity against peroxyl radicals (ACAP) and catalase enzymes was elevated in Group D, with consequently reduced lipid peroxidation (LPO; p < 0.05). In milk, there were no differences in production and composition between groups during the experimental period (p > 0.05); however, ACAP increased and LPO decreased in milk. PRACTICAL APPLICATIONS: Curcumin is a functional molecule with potent antioxidant, anti-inflammatory, and antimicrobial actions, used frequently and with medical indications in human food. Free curcumin in sheep diets improves milk quality and increases its shelf life. This study showed that curcumin nanocapsules produced from the Eudragit L-100 polymer potentiated the anti-inflammatory and antioxidant actions of dairy sheep when used in the diet daily, at doses 10 times lower than that of free curcumin. These positive effects were reflected in higher total antioxidant capacity and lower lipid peroxidation in milk in sheep-fed curcumin-loaded Eudragit L-100 nanocapsules, generating desirable milk properties. In practice, the use of nanotechnology enhances the beneficial effects of curcumin in milk, possibly creating a nutraceutical food desirable to consumers.
Collapse
Affiliation(s)
- Antonise M Jaguezeski
- Graduate Program of Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Graduate Program of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Brazil
| | - Samanta S Gündel
- Laboratory of Nanotechnology, Universidade Franciscana, Santa Maria, Brazil
| | - Fernanda R Favarin
- Laboratory of Nanotechnology, Universidade Franciscana, Santa Maria, Brazil
| | - André Gündel
- Laboratory of Atomic Force Microscopy, Universidade Federal do Pampa, Bagé, Brazil
| | - Carine F Souza
- Graduate Program of Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Matheus D Baldissera
- Graduate Program of Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Chrystian C Cazarotto
- Graduate Program of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Brazil
| | - Andreia Volpato
- Graduate Program of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Brazil
| | - Bruno F Fortuoso
- Graduate Program of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Brazil
| | - Aline F Ourique
- Laboratory of Nanotechnology, Universidade Franciscana, Santa Maria, Brazil
| | - Aleksandro S Da Silva
- Graduate Program of Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Graduate Program of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Brazil
| |
Collapse
|
13
|
Cervantes-Valencia ME, Hermosilla C, Alcalá-Canto Y, Tapia G, Taubert A, Silva LMR. Antiparasitic Efficacy of Curcumin Against Besnoitia besnoiti Tachyzoites in vitro. Front Vet Sci 2019; 5:333. [PMID: 30687723 PMCID: PMC6336690 DOI: 10.3389/fvets.2018.00333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/14/2018] [Indexed: 01/29/2023] Open
Abstract
Besnoitia besnoiti is the causative agent of bovine besnoitiosis. B. besnoiti infections lead to reduced fertility and productivity in cattle causing high economic losses, not only in Europe, but also in Asia and Africa. Mild to severe clinical signs, such as anasarca, oedema, orchitis, hyperkeratosis, and characteristic skin and mucosal cysts, are due to B. besnoiti tachyzoite and bradyzoite replication in intermediate host tissues. So far, there are no commercially available effective drugs against this parasite. Curcumin, a polyphenolic compound from Curcuma longa rhizome is well-known for its antioxidant, anti-inflammatory, immunomodulatory and also anti-protozoan effects. Hence, the objective of this study was to evaluate the effects of curcumin on viability, motility, invasive capacity, and proliferation of B. besnoiti tachyzoites replicating in primary bovine umbilical vein endothelial cells (BUVEC) in vitro. Functional inhibition assays revealed that curcumin treatments reduce tachyzoite viability and induce lethal effects in up to 57% of tachyzoites (IC50 in 5.93 μM). Referring to general motility, significant dose-dependent effects of curcumin treatments were observed. Interestingly, curcumin treatments only dampened helical gliding and twirling activities whilst longitudinal gliding motility was not significantly affected. In addition, curcumin pretreatments of tachyzoites resulted in a dose-dependent reduction of host cell invasion as detected by infections rates at 1 day p. i. These findings demonstrate feeding cattle with Curcuma longa rhizomes may represent a new strategy for besnoitiosis treatment.
Collapse
Affiliation(s)
- María Eugenia Cervantes-Valencia
- Graduate Program of Animal Health and Production, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Yazmín Alcalá-Canto
- Department of Parasitology, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Graciela Tapia
- Department of Genetics and Biostatistics, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Liliana M. R. Silva
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
14
|
Molosse V, Souza CF, Baldissera MD, Glombowsky P, Campigotto G, Cazaratto CJ, Stefani LM, da Silva AS. Diet supplemented with curcumin for nursing lambs improves animal growth, energetic metabolism, and performance of the antioxidant and immune systems. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2018.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Addition of curcumin to the diet of dairy sheep improves health, performance and milk quality. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Asadpour M, Namazi F, Razavi SM, Nazifi S. Curcumin: A promising treatment for Cryptosporidium parvum infection in immunosuppressed BALB/c mice. Exp Parasitol 2018; 195:59-65. [DOI: 10.1016/j.exppara.2018.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/18/2018] [Accepted: 10/28/2018] [Indexed: 12/28/2022]
|
17
|
Asadpour M, Namazi F, Razavi SM, Nazifi S. Comparative efficacy of curcumin and paromomycin against Cryptosporidium parvum infection in a BALB/c model. Vet Parasitol 2018; 250:7-14. [DOI: 10.1016/j.vetpar.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/19/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022]
|
18
|
Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A. Immune modulation by curcumin: The role of interleukin-10. Crit Rev Food Sci Nutr 2017; 59:89-101. [PMID: 28799796 DOI: 10.1080/10408398.2017.1358139] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cytokines are small secreted proteins released by different types of cells with specific effects on cellular signaling and communication via binding to their receptors on the cell surface. IL-10 is known to be a pleiotropic and potent anti-inflammatory and immunosuppressive cytokine that is produced by both innate and adaptive immunity cells including dendritic cells, macrophages, mast cells, natural killer cells, eosinophils, neutrophils, B cells, CD8+ T cells, and TH1, TH2, and TH17 and regulatory T cells. Both direct and indirect activation of the stress axis promotes IL-10 secretion. IL-10 deregulation plays a role in the development of a large number of inflammatory diseases such as neuropathic pain, Parkinson's disease, Alzheimer's disease, osteoarthritis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus, type 1 diabetes, inflammatory bowel disease, and allergy. Curcumin is a natural anti-inflammatory compound able to induce the expression and production of IL-10 and enhancing its action on a large number of tissues. In vitro and in pre-clinical models curcumin is able to modulate the disease pathophysiology of conditions such as pain and neurodegenerative diseases, bowel inflammation, and allergy, but also of infections and cancer through its effect on IL-10 secretion. In humans, at least one part of the positive effects of curcumin on health could be related to its ability to enhance IL-10 -mediated effects.
Collapse
Affiliation(s)
- Hamid Mollazadeh
- a Department of Physiology and Pharmacology, School of Medicine , North Khorasan University of Medical Sciences , Bojnurd , Iran
| | - Arrigo F G Cicero
- b Department of Medical and Surgical Sciences , University of Bologna , Via Albertoni 15, Bologna , Italy
| | | | - Matteo Pirro
- d Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine , University of Perugia , Perugia , Italy
| | | | - Amirhossein Sahebkar
- f Department of Medical Biotechnology, Biotechnology Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
19
|
Pérez-Fonseca A, Alcala-Canto Y, Salem AZM, Alberti-Navarro AB. Anticoccidial efficacy of naringenin and a grapefruit peel extract in growing lambs naturally-infected with Eimeria spp. Vet Parasitol 2016; 232:58-65. [PMID: 27890083 DOI: 10.1016/j.vetpar.2016.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/07/2016] [Accepted: 11/08/2016] [Indexed: 11/19/2022]
Abstract
The current study aimed to determine the anti-Eimeria efficacy of an extract of grapefruit peels (GF) and commercial naringenin (NAR) in naturally-infected lambs, as well as the influence of these flavonoids on the oxidative status during ovine coccidiosis. Pharmacokinetic profiles were also determined. Extracts were administered per os to Eimeria naturally infected growing lambs during 90 consecutive days. The commercial anticoccidial drug toltrazuril (TTZ) was included in this trial as a standard. Twenty-four lambs were divided into four groups: NAR, lambs given a daily dose of 5mg of a commercial naringenin extract of 98% higher purity per kg body weight; GF, lambs that recived a daily dose of 5mg of ethanolic extract of grapefruit peels per kg body weight; TTZ, lambs treated with 20mg of toltrazuril/kg body weight on days 0 and 15 of the experiment; and CTRL, untreated lambs that received daily dose of 30ml of water. Daily doses of GF and NAR were dissolved in 30ml of water and orally given to animals; whereas toltrazuril was administered as a single dose of an undiluted suspension to lambs of the TTZ group. The CTRL group received 30ml of water; as well as the TTZ group for the period after the single dose administration. Fecal and serum samples were collected from all lambs. Anticoccidial efficacy was estimated by coprological techniques. Generation of nitric oxide levels and the antioxidant capacity of the experimental compounds were determined by the Griess and ABTS assays, respectively. The pharmacokinetic parameters of NAR and the GF extract were obtained. On day 30 post-ingestion, anticoccidial efficacy was 91.76% (NAR) and 89.65% (GF); whereas 99.63% of efficacy was achieved with TTZ 15days after treatment. NAR, GF and TTZ significantly reduced oxidative stress in infected animals. The mean daily weight gain for each group was 122g (NAR), 122g (GF), 143g (TTZ) and 98g (CTRL). Following the oral administration of NAR and GF, values in plasma approached maximum concentrations within 2.1 to 2.5h. In conclusion, the administration of NAR and the GF extract reduced Eimeria oocyst output, oxidative stress and promoted higher mean daily weight gains in infected lambs.
Collapse
Affiliation(s)
- Agustín Pérez-Fonseca
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yazmin Alcala-Canto
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Abdelfattah Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico.
| | - Aldo B Alberti-Navarro
- Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|