1
|
Lanzoni D, Grassi Scalvini F, Petrosillo E, Nonnis S, Tedeschi G, Savoini G, Buccioni A, Invernizzi G, Baldi A, Giromini C. Antioxidant capacity and peptidomic analysis of in vitro digested Camelina sativa L. Crantz and Cynara cardunculus co-products. Sci Rep 2024; 14:14456. [PMID: 38914602 PMCID: PMC11196266 DOI: 10.1038/s41598-024-64989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
In recent decades, the food system has been faced with the significant problem of increasing food waste. Therefore, the feed industry, supported by scientific research, is attempting to valorise the use of discarded biomass as co-products for the livestock sector, in line with EU objectives. In parallel, the search for functional products that can ensure animal health and performances is a common fundamental goal for both animal husbandry and feeding. In this context, camelina cake (CAMC), cardoon cake (CC) and cardoon meal (CM), due valuable nutritional profile, represent prospective alternatives. Therefore, the aim of this work was to investigate the antioxidant activity of CAMC, CC and CM following in vitro digestion using 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), Ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Total phenolic content (TPC) and angiotensin converting enzyme (ACE) inhibitory activity, actively involved in modulating antioxidant properties, were also studied. Further, a peptidomic analysis was adopted to substantiate the presence of bioactive peptides after in vitro digestion. The results obtained confirmed an interesting nutritional profile of CAMC, CC and CM and relevant antioxidant and ACE inhibitory activities. In particular, considering antioxidant profile, CM and CC revealed a significantly higher (10969.80 ± 18.93 mg TE/100 g and 10451.40 ± 149.17 mg TE/100 g, respectively; p < 0.05) ABTS value than CAMC (9511.18 ± 315.29 mg TE/100 g); a trend also confirmed with the FRAP assay (306.74 ± 5.68 mg FeSO4/100 g; 272.84 ± 11.02 mg FeSO4/100 g; 103.84 ± 3.27 mg FeSO4/100 g, for CC, CM and CAMC, respectively). Similar results were obtained for TPC, demonstrating the involvement of phenols in modulating antioxidant activity. Finally, CAMC was found to have a higher ACE inhibitory activity (40.34 ± 10.11%) than the other matrices. Furthermore, potentially bioactive peptides associated with ACE inhibitory, anti-hypertensive, anti-cancer, antimicrobial, antiviral, antithrombotic, DPP-IV inhibitory and PEP-inhibitory activities were identified in CAMC. This profile was broader than that of CC and CM. The presence of such peptides corroborates the antioxidant and ACE profile of the sample. Although the data obtained report the important antioxidant profile of CAMC, CC, and CM and support their possible use, future investigations, particularly in vivo trials will be critical to evaluate and further investigate their effects on the health and performance of farm animals.
Collapse
Affiliation(s)
- Davide Lanzoni
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy.
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
| | - Elena Petrosillo
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
- CRC, Innovation for Well-Being and Environment, Università degli Studi di Milano, 20122, Milano, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
- CRC, Innovation for Well-Being and Environment, Università degli Studi di Milano, 20122, Milano, Italy
| | - Giovanni Savoini
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
| | - Arianna Buccioni
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy
- Centro Interdipartimentale di Ricerca e Valorizzazione Degli Alimenti, University of Florence, viale Pieraccini 6, 50139, Firenze, Italy
| | - Guido Invernizzi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
| | - Antonella Baldi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
| | - Carlotta Giromini
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
- Institute for Food, Nutrition and Health, University of Reading, Reading, RG6 5EU, UK
| |
Collapse
|
2
|
Neupane D, Lohaus RH, Solomon JKQ, Cushman JC. Realizing the Potential of Camelina sativa as a Bioenergy Crop for a Changing Global Climate. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060772. [PMID: 35336654 PMCID: PMC8951600 DOI: 10.3390/plants11060772] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 05/09/2023]
Abstract
Camelina sativa (L.) Crantz. is an annual oilseed crop within the Brassicaceae family. C. sativa has been grown since as early as 4000 BCE. In recent years, C. sativa received increased attention as a climate-resilient oilseed, seed meal, and biofuel (biodiesel and renewable or green diesel) crop. This renewed interest is reflected in the rapid rise in the number of peer-reviewed publications (>2300) containing “camelina” from 1997 to 2021. An overview of the origins of this ancient crop and its genetic diversity and its yield potential under hot and dry growing conditions is provided. The major biotic barriers that limit C. sativa production are summarized, including weed control, insect pests, and fungal, bacterial, and viral pathogens. Ecosystem services provided by C. sativa are also discussed. The profiles of seed oil and fatty acid composition and the many uses of seed meal and oil are discussed, including food, fodder, fuel, industrial, and medical benefits. Lastly, we outline strategies for improving this important and versatile crop to enhance its production globally in the face of a rapidly changing climate using molecular breeding, rhizosphere microbiota, genetic engineering, and genome editing approaches.
Collapse
Affiliation(s)
- Dhurba Neupane
- MS330/Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA; (D.N.); (R.H.L.)
| | - Richard H. Lohaus
- MS330/Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA; (D.N.); (R.H.L.)
| | - Juan K. Q. Solomon
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, NV 89557, USA;
| | - John C. Cushman
- MS330/Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA; (D.N.); (R.H.L.)
- Correspondence: ; Tel.: +1-775-784-1918
| |
Collapse
|
3
|
Lipid Oxidation and Colour Stability of Lamb and Yearling Meat (Muscle Longissimus Lumborum) from SheepSupplemented with Camelina-Based Diets after Short-,Medium-, and Long-Term Storage. Antioxidants (Basel) 2021; 10:antiox10020166. [PMID: 33499407 PMCID: PMC7912286 DOI: 10.3390/antiox10020166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
This study investigated the impact of feeding pelleted diets containing camelina (Camelina sativa L. Crantz) hay (CAHP) or camelina meal (CAMP) as a supplement compared with a control pellet (CONP) diet, without vitamin E fortification. The fatty acid profile, retail colour, and lipid oxidative stability of lamb and yearling meat (m. longissimus lumborum) stored for short-, medium-, or long-periods (2 days (fresh), 45 days and 90 days) under chilled to semi-frozen conditions were determined. The CAMP diet altered key fatty acids (p < 0.05) in a nutritionally beneficial manner for human health compared to the other diets, with increased total omega-3, decreased omega-6 fatty acids and decreased omega-6/omega-3 ratio of muscle. Muscle vitamin E concentration was lower (p < 0.05) for both camelina diets (CAMP and CAHP) when compared with the CONP diet, with the average concentrations less than 1 mg/kg muscle for all three treatments. Animal type and storage length were factors that all affected (p < 0.05) colour and lipid oxidative stability of meat. These results emphasise the importance of vitamin E concentration in meat stored for extended periods under semi-frozen conditions to maintain desirable meat colour during retail display, and to avoid off-flavour development of the cooked meat.
Collapse
|