1
|
Karabaş M, Yılmaz O. Identification of selection signatures and genetic diversity in the sheep. Trop Anim Health Prod 2025; 57:68. [PMID: 39964635 PMCID: PMC11836209 DOI: 10.1007/s11250-025-04307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/31/2025] [Indexed: 02/21/2025]
Abstract
In the study, data obtained from OvineSNP50K SNP chips using the Illumina® iScan platform for Eşme sheep were used. The integrated haplotype score (iHS) and runs of homozygosity (ROH) statistical approaches were used to identify selection signatures. Using the iHS analysis, it was discovered that there are 10 genomic regions and 51 genes on ovine chromosomes 1, 9, 11, and 12 that are under selection. Three genomic regions and 97 genes on ovine chromosomes 6 and 11 were found to be under selection using the ROH analysis. Candidate genes associated with economic and ecological traits were detected using both approaches. Among the genetic diversity parameters considered in this study, the minor allele frequency (MAF), the genetic distance between individuals (D), as well as observed (Ho) and expected heterozygosities (He) values were 0.300, 0.309, 0.388, and 0.390, respectively. The obtained Ho, He and D values indicate a moderate level of genetic diversity. The ratio of polymorphic SNPs (PN) was 0.947, and the average values of FROH and FHOM were 0.030 and 0.029, respectively. Considering the PN value obtained in the study, it is evident that the SNPs in the population exhibit a high level of polymorphism at 94.7%. While the FROH value obtained indicates high genetic diversity among the individuals in the present study, the FHOM value suggests that the population is predominantly composed of heterozygous individuals. As a result, evidence indicating genetic advancements have been made for target traits in breeding programs within the population. Additionally, candidate genes suitable for future molecular marker-supported breeding programs have been identified. In addition, a better understanding of the genetic structure and production potential of the population has been achieved. Findings have shown that Eşme sheep are a breed with high meat production potential and strong adaptation abilities.
Collapse
Affiliation(s)
- Mustafa Karabaş
- Faculty of Agriculture Animal Science Department, Aydın Adnan Menderes University, 09020, Aydın, Türkiye
| | - Onur Yılmaz
- Faculty of Agriculture Animal Science Department, Aydın Adnan Menderes University, 09020, Aydın, Türkiye.
| |
Collapse
|
2
|
Becker GM, Thorne JW, Burke JM, Lewis RM, Notter DR, Morgan JLM, Schauer CS, Stewart WC, Redden RR, Murdoch BM. Genetic diversity of United States Rambouillet, Katahdin and Dorper sheep. Genet Sel Evol 2024; 56:56. [PMID: 39080565 PMCID: PMC11290166 DOI: 10.1186/s12711-024-00905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Managing genetic diversity is critically important for maintaining species fitness. Excessive homozygosity caused by the loss of genetic diversity can have detrimental effects on the reproduction and production performance of a breed. Analysis of genetic diversity can facilitate the identification of signatures of selection which may contribute to the specific characteristics regarding the health, production and physical appearance of a breed or population. In this study, breeds with well-characterized traits such as fine wool production (Rambouillet, N = 745), parasite resistance (Katahdin, N = 581) and environmental hardiness (Dorper, N = 265) were evaluated for inbreeding, effective population size (Ne), runs of homozygosity (ROH) and Wright's fixation index (FST) outlier approach to identify differential signatures of selection at 36,113 autosomal single nucleotide polymorphisms (SNPs). RESULTS Katahdin sheep had the largest current Ne at the most recent generation estimated with both the GONe and NeEstimator software. The most highly conserved ROH Island was identified in Rambouillet with a signature of selection on chromosome 6 containing 202 SNPs called in an ROH in 50 to 94% of the individuals. This region contained the DCAF16, LCORL and NCAPG genes that have been previously reported to be under selection and have biological roles related to milk production and growth traits. The outlier regions identified through the FST comparisons of Katahdin with Rambouillet and Dorper contained genes with known roles in milk production and mastitis resistance or susceptibility, and the FST comparisons of Rambouillet with Katahdin and Dorper identified genes related to wool growth, suggesting these traits have been under natural or artificial selection pressure in these populations. Genes involved in the cytokine-cytokine receptor interaction pathways were identified in all FST breed comparisons, which indicates the presence of allelic diversity between these breeds in genomic regions controlling cytokine signaling mechanisms. CONCLUSIONS In this paper, we describe signatures of selection within diverse and economically important U.S. sheep breeds. The genes contained within these signatures are proposed for further study to understand their relevance to biological traits and improve understanding of breed diversity.
Collapse
Affiliation(s)
- Gabrielle M Becker
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
| | - Jacob W Thorne
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
- Texas A&M AgriLife Extension, Texas A&M University, San Angelo, TX, USA
| | - Joan M Burke
- USDA, ARS, Dale Bumpers Small Farms Research Center, Booneville, AR, USA
| | - Ronald M Lewis
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - David R Notter
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Christopher S Schauer
- Hettinger Research Extension Center, North Dakota State University, Hettinger, ND, USA
| | - Whit C Stewart
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - R R Redden
- Texas A&M AgriLife Extension, Texas A&M University, San Angelo, TX, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
3
|
Congiu M, Falchi L, Carta S, Cesarani A, Dimauro C, Correddu F, Macciotta NPP. Investigation of phenotypic, genetic and genomic background of Milk spectra in Sarda dairy sheep. J Anim Breed Genet 2024; 141:317-327. [PMID: 38148615 DOI: 10.1111/jbg.12843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/14/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023]
Abstract
Aim of this study was to analyse the genetic background of milk Fourier transform infrared (FTIR) spectra in dairy sheep. Individual milk FTIR spectra, with 1060 wavenumbers each, were available for 793 adult Sarda breed ewes genotyped at 45,813 SNP. The absorbance values of each wavenumber was analysed using a linear mixed model that included dim class, parity and lambing month as fixed effects and flock-test date and animal as random effects. The model was applied to estimate variance components and heritability and to perform a genome-wide association study for each wavenumber. Average h2 of wavenumbers absorbance was 0.13 ± 0.08, with the largest values observed in the regions associated with the characteristic bonds of carbonylic and methylenic groups of milk fat (h2 = 0.57 at 1724-1728 cm-1; and h2 = 0.34 at 2811-2834 cm-1, respectively). The absorbance values of wavenumbers were moderately correlated with the estimated heritabilities. After the Bonferroni correction, a total of nine markers were found to be significantly associated with 32 different wavenumbers. Of particular interest was the SNP s63269.1, mapped on chromosome 2, that was found to be associated with 27 wavenumbers. Genes previously found to be related to traits of interest (e.g. disease resistance, milk yield and quality, cheese firmness) are located close to the significant SNP. As expected, the heritability estimated for the absorbance of each wavenumbers seems to be associated with the related milk components.
Collapse
Affiliation(s)
- Michele Congiu
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - Laura Falchi
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - Silvia Carta
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - Alberto Cesarani
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Corrado Dimauro
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - Fabio Correddu
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | | |
Collapse
|
4
|
Cesarani A, Corte Pause F, Hidalgo J, Garcia A, Degano L, Vicario D, Macciota NPP, Stradaioli G. Genetic background of semen parameters in Italian Simmental bulls. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2022.2160665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Alberto Cesarani
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Francesca Corte Pause
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Jorge Hidalgo
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Andre Garcia
- Angus Genetics Inc. - American Angus Association, Saint Joseph, MO, USA
| | - Lorenzo Degano
- Associazione Nazionale Allevatori Pezzata Rossa Italiana (ANAPRI), Udine, Italy
| | - Daniele Vicario
- Associazione Nazionale Allevatori Pezzata Rossa Italiana (ANAPRI), Udine, Italy
| | | | - Giuseppe Stradaioli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
5
|
Lukic B, Curik I, Drzaic I, Galić V, Shihabi M, Vostry L, Cubric-Curik V. Genomic signatures of selection, local adaptation and production type characterisation of East Adriatic sheep breeds. J Anim Sci Biotechnol 2023; 14:142. [PMID: 37932811 PMCID: PMC10626677 DOI: 10.1186/s40104-023-00936-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/04/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The importance of sheep breeding in the Mediterranean part of the eastern Adriatic has a long tradition since its arrival during the Neolithic migrations. Sheep production system is extensive and generally carried out in traditional systems without intensive systematic breeding programmes for high uniform trait production (carcass, wool and milk yield). Therefore, eight indigenous Croatian sheep breeds from eastern Adriatic treated here as metapopulation (EAS), are generally considered as multipurpose breeds (milk, meat and wool), not specialised for a particular type of production, but known for their robustness and resistance to certain environmental conditions. Our objective was to identify genomic regions and genes that exhibit patterns of positive selection signatures, decipher their biological and productive functionality, and provide a "genomic" characterization of EAS adaptation and determine its production type. RESULTS We identified positive selection signatures in EAS using several methods based on reduced local variation, linkage disequilibrium and site frequency spectrum (eROHi, iHS, nSL and CLR). Our analyses identified numerous genomic regions and genes (e.g., desmosomal cadherin and desmoglein gene families) associated with environmental adaptation and economically important traits. Most candidate genes were related to meat/production and health/immune response traits, while some of the candidate genes discovered were important for domestication and evolutionary processes (e.g., HOXa gene family and FSIP2). These results were also confirmed by GO and QTL enrichment analysis. CONCLUSIONS Our results contribute to a better understanding of the unique adaptive genetic architecture of EAS and define its productive type, ultimately providing a new opportunity for future breeding programmes. At the same time, the numerous genes identified will improve our understanding of ruminant (sheep) robustness and resistance in the harsh and specific Mediterranean environment.
Collapse
Affiliation(s)
- Boris Lukic
- Faculty of Agrobiotechnical Sciences Osijek, J.J, Strossmayer University of Osijek, Vladimira Preloga 1, 31000, Osijek, Croatia.
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia.
| | - Ivana Drzaic
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| | - Vlatko Galić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Južno predgrađe 17, 31000, Osijek, Croatia
| | - Mario Shihabi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| | - Luboš Vostry
- Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praque, Czech Republic
| | - Vlatka Cubric-Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| |
Collapse
|
6
|
Ben Jemaa S, Tolone M, Sardina MT, Di Gerlando R, Chessari G, Criscione A, Persichilli C, Portolano B, Mastrangelo S. A genome-wide comparison between selected and unselected Valle del Belice sheep reveals differences in population structure and footprints of recent selection. J Anim Breed Genet 2023; 140:558-567. [PMID: 37226373 DOI: 10.1111/jbg.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
About three decades of breeding and selection in the Valle del Belìce sheep are expected to have left several genomic footprints related to milk production traits. In this study, we have assembled a dataset with 451 individuals of the Valle del Belìce sheep breed: 184 animals that underwent directional selection for milk production and 267 unselected animals, genotyped for 40,660 single-nucleotide polymorphisms (SNPs). Three different statistical approaches, both within (iHS and ROH) and between (Rsb) groups, were used to identify genomic regions potentially under selection. Population structure analyses separated all individuals according to their belonging to the two groups. A total of four genomic regions on two chromosomes were jointly identified by at least two statistical approaches. Several candidate genes for milk production were identified, corroborating the polygenic nature of this trait and which may provide clues to potential new selection targets. We also found candidate genes for growth and reproductive traits. Overall, the identified genes may explain the effect of selection to improve the performances related to milk production traits in the breed. Further studies using high-density array data, would be particularly relevant to refine and validate these results.
Collapse
Affiliation(s)
- Slim Ben Jemaa
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, Ariana, Tunisia
| | - Marco Tolone
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Giorgio Chessari
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Andrea Criscione
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Christian Persichilli
- Dipartimento di Agraria, Ambientale e Scienze dell'alimentazione, University of Molise, Campobasso, Italy
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| |
Collapse
|
7
|
Gmel AI, Brem G, Neuditschko M. New genomic insights into the conformation of Lipizzan horses. Sci Rep 2023; 13:8990. [PMID: 37268682 DOI: 10.1038/s41598-023-36272-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023] Open
Abstract
Conformation traits are important selection criteria in equine breeding, as they describe the exterior aspects of the horse (height, joint angles, shape). However, the genetic architecture of conformation is not well understood, as data of these traits mainly consist of subjective evaluation scores. Here, we performed genome-wide association studies on two-dimensional shape data of Lipizzan horses. Based on this data, we identified significant quantitative trait loci (QTL) associated with cresty neck on equine chromosome (ECA)16 within the MAGI1 gene, and with type, hereby differentiating heavy from light horses on ECA5 within the POU2F1 gene. Both genes were previously described to affect growth, muscling and fatty deposits in sheep, cattle and pigs. Furthermore, we pin-pointed another suggestive QTL on ECA21, near the PTGER4 gene, associated with human ankylosing spondylitis, for shape differences in the back and pelvis (roach back vs sway back). Further differences in the shape of the back and abdomen were suggestively associated with the RYR1 gene, involved in core muscle weakness in humans. Therefore, we demonstrated that horse shape space data enhance the genomic investigations of horse conformation.
Collapse
Affiliation(s)
- A I Gmel
- Equine Department, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
- Animal GenoPhenomics, Agroscope, Rte de La Tioleyre 4, 1725, Posieux, Switzerland
| | - G Brem
- Institute of Animal Breeding and Genetics, Veterinary University Vienna, Veterinärplatz 1, 1220, Vienna, Austria
| | - M Neuditschko
- Animal GenoPhenomics, Agroscope, Rte de La Tioleyre 4, 1725, Posieux, Switzerland.
- Institute of Animal Breeding and Genetics, Veterinary University Vienna, Veterinärplatz 1, 1220, Vienna, Austria.
| |
Collapse
|
8
|
Cesarani A, Mastrangelo S, Congiu M, Portolano B, Gaspa G, Tolone M, Macciotta NPP. Relationship between inbreeding and milk production traits in two Italian dairy sheep breeds. J Anim Breed Genet 2023; 140:28-38. [PMID: 36239218 PMCID: PMC10092622 DOI: 10.1111/jbg.12741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022]
Abstract
The effects of inbreeding in livestock species breeds have been well documented and they have a negative impact on profitability. The objective of this study was to evaluate the levels of inbreeding in Sarda (SAR, n = 785) and Valle del Belice (VdB, n = 473) dairy sheep breeds and their impact on milk production traits. Two inbreeding coefficients (F) were estimated: using pedigree (FPED ), or runs of homozygosity (ROH; FROH ) at different minimum ROH lengths and different ROH classes. After the quality control, 38,779 single nucleotide polymorphisms remained for further analyses. A mixed-linear model was used to evaluate the impact of inbreeding coefficients on production traits within each breed. VdB showed higher inbreeding coefficients compared to SAR, with both breeds showing lower estimates as the minimum ROH length increased. Significant inbreeding depression was found only for milk yield, with a loss of around 7 g/day (for SAR) and 9 g/day (VdB) for a 1% increase of FROH . The present study confirms how the use of genomic information can be used to manage intra-breed diversity and to calculate the effects of inbreeding on phenotypic traits.
Collapse
Affiliation(s)
- Alberto Cesarani
- Dipartimento di Agraria, Università di Sassari, Sassari, Italy.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Michele Congiu
- Dipartimento di Agraria, Università di Sassari, Sassari, Italy
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Giustino Gaspa
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Grugliasco, Italy
| | - Marco Tolone
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | | |
Collapse
|
9
|
Gaspa G, Correddu F, Cesarani A, Congiu M, Dimauro C, Pauciullo A, Macciotta NPP. Multivariate and Genome-Wide Analysis of Mid-Infrared Spectra of Non-Coagulating Milk of Sarda Sheep Breed. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.889797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Milk coagulation ability is crucial for the dairy sheep industry since the whole amount of milk is processed into cheese. Non-coagulating milk (NCM) is defined as milk not forming a curd within the testing time. In sheep milk, it has been reported in literature that up to 20% of milk is NCM. Although the clotting properties of individual milk have been widely studied, little attention has been given to NCM and genomic dissection of this trait. Mid-infrared (MIR) spectra can be exploited both to predict cheese-making aptitude and to discriminate between coagulating milk and NCM. The main goals of this work were (i) to assess the predictivity of MIR spectra for NCM classification and (ii) to conduct a genome-wide association study on coagulation ability. Milk samples from 949 Sarda ewes genotyped and phenotyped for milk coagulation properties (MCPs) served as the training dataset. The validation dataset included 662 ewes. Three classical MCPs were measured: rennet coagulation time (RCT), curd firmness (a30), and curd firming time (k20). Moreover, MIR spectra were acquired and stored in the region between 925.92 and 5,011.54 cm−1. The probability of a sample to be NCM was modeled by step-wise logistic regression on milk spectral information (LR-W), logistic regression on principal component (LR-PC), and canonical discriminant analysis of spectral wave number (DA-W). About 9% of the samples did not coagulate at 30 min. The use of LR-W gave a poorer classification of NCM. The use of LR-PC improved the percentage of correct assignment (45 ± 9%). The DA-W method allows us to reach 75.1 ± 10.3 and 76.5 ± 18.4% of correct assignments of the inner and external validation datasets, respectively. As far as GWA of NCM, 458 SNP associations and 45 candidate genes were detected. The genes retrieved from public databases were mostly linked to mammary gland metabolism, udder health status, and a milk compound also known to affect the ability of milk to coagulate. In particular, the potential involvement of CAPNs deserves further investigation.
Collapse
|
10
|
Conte G, Palombo V, Serra A, Correddu F, D’Andrea M, Macciotta NPP, Mele M. Study of the Fatty Acid Profile of Milk in Different Sheep Breeds: Evaluation by Multivariate Factorial Analysis. Animals (Basel) 2022; 12:ani12060722. [PMID: 35327119 PMCID: PMC8944521 DOI: 10.3390/ani12060722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary The quality of milk is strongly influenced by its lipid profile. The increase in fats with nutraceutical properties at the expense of those negative for human health, has always been a goal to improve the functional properties of milk. To achieve this goal, it is essential to know the metabolism of the mammary gland and the relationship between the various lipid components. Much is known about bovine milk, while the aspect relating to the sheep species has not been developed. The present work aims to investigate the relationships between the various fatty acids in sheep’s milk through a multivariate approach, which can highlight the mammary role of lipid synthesis. Abstract A multivariate analysis was used to investigate the fatty acid (FA) profile in three different Italian sheep breeds: Comisana, Massese, and Sarda. A sample of 852 animals was considered: 118 Massese, 303 Comisana, 431 Sarda. Sarda sheep were divided into two groups, based on their breeding origin (298 and 133 reared in Sardinia and Tuscany, respectively). Sarda sheep, bred both in Sardinia and in Tuscany, were considered in different groups, both because in these two regions most of the sheep of this breed are reared, and because they differ in geographical characteristics and in the farming system. The individual milk FA composition of dairy ewes was analyzed with multivariate factor analysis. The extracted factors were representative of the following eight groups of fatty acids or functions: factor 1 (odd branched fatty acids and long-chain fatty acids), factor 2 (sn3_position), factor 3 (alternative biohydrogenation), factor 4 (SCD_1), factor 5 (SCD_2), factor 6 (SCD_3), factor 7 (fat secretion) and factor 8 (omega-3). A factor analysis suggested the presence of different metabolic pathways for de novo short- and medium-chain fatty acids and Δ9-desaturase products. The ANOVA of factor scores highlighted the significant effects of the breed. The results of the present study showed that breed is an important factor in defining the fatty acid profile of milk, combined with the effect of the diet. Breeds reared in the same farming system (Comisana, Massese and Sarda reared in Tuscany) showed significant differences for all the factors extracted. At the same time, we found differences between the Sarda sheep reared in Sardinia and Tuscany, two different regions of Italy.
Collapse
Affiliation(s)
- Giuseppe Conte
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.S.); (M.M.)
- Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Correspondence:
| | - Valentino Palombo
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Via De Sanctis snc, 86100 Campobasso, Italy; (V.P.); (M.D.)
| | - Andrea Serra
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.S.); (M.M.)
- Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Fabio Correddu
- Department of Agriculture, University of Sassari, Via de Nicola 9, 07100 Sassari, Italy; (F.C.); (N.P.P.M.)
| | - Mariasilvia D’Andrea
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Via De Sanctis snc, 86100 Campobasso, Italy; (V.P.); (M.D.)
| | | | - Marcello Mele
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.S.); (M.M.)
- Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
11
|
Identification of Copy Number Variations and Genetic Diversity in Italian Insular Sheep Breeds. Animals (Basel) 2022; 12:ani12020217. [PMID: 35049839 PMCID: PMC8773107 DOI: 10.3390/ani12020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/05/2023] Open
Abstract
Copy number variants (CNVs) are one of the major contributors to genetic diversity and phenotypic variation in livestock. The aim of this work is to identify CNVs and perform, for the first time, a CNV-based population genetics analysis with five Italian sheep breeds (Barbaresca, Comisana, Pinzirita, Sarda, and Valle del Belìce). We identified 10,207 CNVs with an average length of 1.81 Mb. The breeds showed similar mean numbers of CNVs, ranging from 20 (Sarda) to 27 (Comisana). A total of 365 CNV regions (CNVRs) were determined. The length of the CNVRs varied among breeds from 2.4 Mb to 124.1 Mb. The highest number of shared CNVRs was between Comisana and Pinzirita, and only one CNVR was shared among all breeds. Our results indicated that segregating CNVs expresses a certain degree of diversity across all breeds. Despite the low/moderate genetic differentiation among breeds, the different approaches used to disclose the genetic relationship showed that the five breeds tend to cluster in distinct groups, similar to the previous studies based on single-nucleotide polymorphism markers. Gene enrichment was described for the 37 CNVRs selected, considering the top 10%. Out of 181 total genes, 67 were uncharacterized loci. Gene Ontology analysis showed that several of these genes are involved in lipid metabolism, immune response, and the olfactory pathway. Our results corroborated previous studies and showed that CNVs represent valuable molecular resources for providing useful information for separating the population and could be further used to explore the function and evolutionary aspect of sheep genome.
Collapse
|
12
|
Cesarani A, Gaspa G, Correddu F, Dimauro C, Macciotta NPP. Unravelling the effect of environment on the genome of Sarda breed ewes using Runs of Homozygosity. J Anim Breed Genet 2022; 139:292-306. [PMID: 34984736 DOI: 10.1111/jbg.12666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 02/04/2023]
Abstract
Natural adaptation and artificial selection have shaped the genome of modern livestock breeds. Among SNP-based metrics that are used to detect signatures of selection at genome-wide level, runs of homozygosity (ROH) are getting increasing popularity. In this paper, ROH distribution and features of a sample of 823 Sarda breed ewes farmed at different levels of altitude are analysed to investigate the effect of the environment on the patterns of homozygosity. A total of 46,829 (33,087 unique) ROH were detected. OAR2 exhibited the largest average number of ROH per animal. The most frequent ROH (OAR27, 38.9-44.2 Mb) was shared by 327. ROH length was statistically affected (p < 0.001) by both the altitude and temperature of the place where the flock was located. The highest probability of a SNP falling in a ROH was observed for hill ewes, whereas the smallest one for mountain. A total of 457 SNP exceeded the 99th percentile of the ROH count per SNP distribution and were considered significant. These markers mapped in eight chromosomes and they clustered into 17 ROH islands, where 80 candidate genes were mapped. Results of this study highlighted differences in the ROH distribution and features among sheep farmed in flocks located at different levels of altitude, confirming the role of environmental adaptability in shaping the genome of this breed.
Collapse
Affiliation(s)
- Alberto Cesarani
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Giustino Gaspa
- Department of Agricultural, Forestry and Alimentary Sciences, University of Torino, Grugliasco, Italy
| | - Fabio Correddu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Corrado Dimauro
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | | |
Collapse
|
13
|
Falchi L, Gaspa G, Cesarani A, Correddu F, Degano L, Vicario D, Lourenco D, Macciotta NPP. Investigation of β-hydroxybutyrate in early lactation of Simmental cows: Genetic parameters and genomic predictions. J Anim Breed Genet 2021; 138:708-718. [PMID: 34180560 PMCID: PMC8518359 DOI: 10.1111/jbg.12637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/28/2021] [Indexed: 11/28/2022]
Abstract
Genomic information allows for a more accurate calculation of relationships among animals than the pedigree information, leading to an increase in accuracy of breeding values. Here, we used pedigree-based and single-step genomic approaches to estimate variance components and breeding values for β-hydroxybutyrate milk content (BHB). Additionally, we performed a genome-wide association study (GWAS) to depict its genetic architecture. BHB concentrations within the first 90 days of lactation, estimated from milk medium infrared spectra, were available for 30,461 cows (70,984 records). Genotypes at 42,152 loci were available for 9,123 animals. Low heritabilities were found for BHB using pedigree-based (0.09 ± 0.01) and genomic (0.10 ± 0.01) approaches. Genetic correlation between BHB and milk traits ranged from -0.27 ± 0.06 (BHB and protein percentage) to 0.13 ± 0.07 (BHB and fat-to-protein ratio) using pedigree and from -0.26 ± 0.05 (BHB and protein percentage) to 0.13 ± 0.06 (BHB and fat-to-protein ratio) using genomics. Breeding values were validated for 344 genotyped cows using linear regression method. The genomic EBV (GEBV) had greater accuracy (0.51 vs. 0.45) and regression coefficient (0.98 vs. 0.95) compared to EBV. The correlation between two subsequent evaluations, without and with phenotypes for validation cows, was 0.85 for GEBV and 0.82 for EBV. Predictive ability (correlation between (G)EBV and adjusted phenotypes) was greater when genomic information was used (0.38) than in the pedigree-based approach (0.31). Validation statistics in the pairwise two-trait models (milk yield, fat and protein percentage, urea, fat/protein ratio, lactose and logarithmic transformation of somatic cells count) were very similar to the ones highlighted for the single-trait model. The GWAS allowed discovering four significant markers located on BTA20 (57.5-58.2 Mb), where the ANKH gene is mapped. This gene has been associated with lactose, alpha-lactalbumin and BHB. Results of this study confirmed the usefulness of genomic information to provide more accurate variance components and breeding values, and important insights about the genomic determination of BHB milk content.
Collapse
Affiliation(s)
- Laura Falchi
- Department of Agricultural SciencesUniversity of SassariSassariItaly
| | - Giustino Gaspa
- Department of Agricultural, Forest and Food SciencesUniversity of TorinoTorinoItaly
| | - Alberto Cesarani
- Department of Agricultural SciencesUniversity of SassariSassariItaly
- Department of Animal and Dairy ScienceUniversity of GeorgiaAthensGAUSA
| | - Fabio Correddu
- Department of Agricultural SciencesUniversity of SassariSassariItaly
| | - Lorenzo Degano
- Associazione Nazionale Allevatori Pezzata Rossa (ANAPRI)UdineItaly
| | - Daniele Vicario
- Associazione Nazionale Allevatori Pezzata Rossa (ANAPRI)UdineItaly
| | - Daniela Lourenco
- Department of Animal and Dairy ScienceUniversity of GeorgiaAthensGAUSA
| | | |
Collapse
|
14
|
Manca E, Cesarani A, Falchi L, Atzori AS, Gaspa G, Rossoni A, Macciotta NPP, Dimauro C. Genome-wide association study for residual concentrate intake using different approaches in Italian Brown Swiss. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1963864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- E. Manca
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - A. Cesarani
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - L. Falchi
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - A. S. Atzori
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - G. Gaspa
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Grugliasco, Italy
| | - A. Rossoni
- Associazione Nazionale degli Allevatori di Razza Bruna (ANARB), Verona, Italy
| | | | - C. Dimauro
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| |
Collapse
|
15
|
Marina H, Pelayo R, Suárez-Vega A, Gutiérrez-Gil B, Esteban-Blanco C, Arranz JJ. Genome-wide association studies (GWAS) and post-GWAS analyses for technological traits in Assaf and Churra dairy breeds. J Dairy Sci 2021; 104:11850-11866. [PMID: 34454756 DOI: 10.3168/jds.2021-20510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
This study aimed to perform a GWAS to identify genomic regions associated with milk and cheese-making traits in Assaf and Churra dairy sheep breeds; second, it aimed to identify possible positional and functional candidate genes and their interactions through post-GWAS studies. For 2,020 dairy ewes from 2 breeds (1,039 Spanish Assaf and 981 Churra), milk samples were collected and analyzed to determine 6 milk production and composition traits and 6 traits related to milk coagulation properties and cheese yield. The genetic profiles of the ewes were obtained using a genotyping chip array that included 50,934 SNP markers. For both milk and cheese-making traits, separate single-breed GWAS were performed using GCTA software. The set of positional candidate genes identified via GWAS was subjected to guilt-by-association-based prioritization analysis with ToppGene software. Totals of 84 and 139 chromosome-wise significant associations for the 6 milk traits and the 6 cheese-making traits were identified in this study. No significant SNPs were found in common between the 2 studied breeds, possibly due to their genetic heterogeneity of the phenotypes under study. Additionally, 63 and 176 positional candidate genes were located in the genomic intervals defined as confidence regions in relation to the significant SNPs identified for the analyzed traits for Assaf and Churra breeds. After the functional prioritization analysis, 71 genes were identified as promising positional and functional candidate genes and proposed as targets of future research to identify putative causative variants in relation to the traits under examination. In addition, this multitrait study allowed us to identify variants that have a pleiotropic effect on both milk production and cheese-related traits. The incorporation of variants among the proposed functional and positional candidate genes into genomic selection strategies represent an interesting approach for achieving rapid genetic gains, specifically for those traits difficult to measure, such as cheese-making traits.
Collapse
Affiliation(s)
- H Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - R Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - A Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - B Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - C Esteban-Blanco
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - J J Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain.
| |
Collapse
|
16
|
Farm Animals Are Long Away from Natural Behavior: Open Questions and Operative Consequences on Animal Welfare. Animals (Basel) 2021; 11:ani11030724. [PMID: 33800925 PMCID: PMC8001272 DOI: 10.3390/ani11030724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Animal welfare is a very important issue. One of the tasks of researchers is to provide explanations and possible solutions to questions arising from non-experts. This work analyzes part of the extensive literature on relationships between selection and domestic, mainly farm, animals’ behavior and deals with some very important themes, such as the role of regulations, domestication, and selection. Abstract The concept of welfare applied to farm animals has undergone a remarkable evolution. The growing awareness of citizens pushes farmers to guarantee the highest possible level of welfare to their animals. New perspectives could be opened for animal welfare reasoning around the concept of domestic, especially farm, animals as partial human artifacts. Therefore, it is important to understand how much a particular behavior of a farm animal is far from the natural one of its ancestors. This paper is a contribution to better understand the role of genetics of the farm animals on their behavior. This means that the naïve approach to animal welfare regarding returning animals to their natural state should be challenged and that welfare assessment should be considered.
Collapse
|
17
|
Macciotta NPP, Colli L, Cesarani A, Ajmone-Marsan P, Low WY, Tearle R, Williams JL. The distribution of runs of homozygosity in the genome of river and swamp buffaloes reveals a history of adaptation, migration and crossbred events. Genet Sel Evol 2021; 53:20. [PMID: 33639853 PMCID: PMC7912491 DOI: 10.1186/s12711-021-00616-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/17/2021] [Indexed: 01/03/2023] Open
Abstract
Background Water buffalo is one of the most important livestock species in the world. Two types of water buffalo exist: river buffalo (Bubalus bubalis bubalis) and swamp buffalo (Bubalus bubalis carabanensis). The buffalo genome has been recently sequenced, and thus a new 90 K single nucleotide polymorphism (SNP) bead chip has been developed. In this study, we investigated the genomic population structure and the level of inbreeding of 185 river and 153 swamp buffaloes using runs of homozygosity (ROH). Analyses were carried out jointly and separately for the two buffalo types. Results The SNP bead chip detected in swamp about one-third of the SNPs identified in the river type. In total, 18,116 ROH were detected in the combined data set (17,784 SNPs), and 16,251 of these were unique. ROH were present in both buffalo types mostly detected (~ 59%) in swamp buffalo. The number of ROH per animal was larger and genomic inbreeding was higher in swamp than river buffalo. In the separated datasets (46,891 and 17,690 SNPs for river and swamp type, respectively), 19,760 and 10,581 ROH were found in river and swamp, respectively. The genes that map to the ROH islands are associated with the adaptation to the environment, fitness traits and reproduction. Conclusions Analysis of ROH features in the genome of the two water buffalo types allowed their genomic characterization and highlighted differences between buffalo types and between breeds. A large ROH island on chromosome 2 was shared between river and swamp buffaloes and contained genes that are involved in environmental adaptation and reproduction. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00616-3.
Collapse
Affiliation(s)
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti-DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italia.,Centro di Ricerca sulla Biodiversità e sul DNA Antico-BioDNA, Università Cattolica del Sacro Cuore, Piacenza, Italia
| | - Alberto Cesarani
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italia. .,Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | - Paolo Ajmone-Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti-DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italia.,Centro di Ricerca Nutrigenomica e Proteomica-PRONUTRIGEN, Università Cattolica del Sacro Cuore, Piacenza, Italia
| | - Wai Y Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Rick Tearle
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - John L Williams
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti-DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italia.,The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| |
Collapse
|
18
|
Saravanan KA, Panigrahi M, Kumar H, Parida S, Bhushan B, Gaur GK, Dutt T, Mishra BP, Singh RK. Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics 2021; 113:955-963. [PMID: 33610795 DOI: 10.1016/j.ygeno.2021.02.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/30/2021] [Accepted: 02/15/2021] [Indexed: 12/30/2022]
Abstract
Domestication and selection are the major driving forces responsible for the determinative genetic variability in livestock. These selection patterns create unique genetic signatures within the genome. BovineSNP50 chip data from 236 animals (seven indicine and five taurine cattle breeds) were analyzed in the present study. We implemented three complementary approaches viz. iHS (Integrated haplotype score), ROH (Runs of homozygosity), and FST, to detect selection signatures. A total of 179, 56, and 231 regions revealed 518, 277, and 267 candidate genes identified by iHS, ROH, and FST methods, respectively. We found several candidate genes (e.g., NCR3, ARID5A, HIST1H2BN, DEFB4, DEFB7, HSPA1L, HSPA1B, and DNAJB4) related to production traits and the adaptation of indigenous breeds to local environmental constraints such as heat stress and disease susceptibility. However, further studies are warranted to refine the findings using a larger sample size, whole-genome sequencing, and/or high density genotyping.
Collapse
Affiliation(s)
- K A Saravanan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Harshit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - G K Gaur
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production & Management section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - B P Mishra
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - R K Singh
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
19
|
Saravanan K, Panigrahi M, Kumar H, Bhushan B, Dutt T, Mishra B. Genome-wide analysis of genetic diversity and selection signatures in three Indian sheep breeds. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Di Stasio L, Albera A, Pauciullo A, Cesarani A, Macciotta NPP, Gaspa G. Genetics of Arthrogryposis and Macroglossia in Piemontese Cattle Breed. Animals (Basel) 2020; 10:ani10101732. [PMID: 32987629 PMCID: PMC7598642 DOI: 10.3390/ani10101732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The study was carried out in order to investigate the genetic background of arthrogryposis and macroglossia in the Piemontese cattle breed, for which limited information is available so far. The genotyping of affected and healthy animals with a high-density chip and the subsequent genome-wide association study did not evidence a single strong association with the two pathologies. Therefore, for arthrogryposis, the results do not support the existence of a single-gene model, as reported for other breeds. Rather, 23 significant markers on different chromosomes were found, associated to arthrogryposis, to macroglossia, or to both pathologies, suggesting a more complex genetic mechanism underlying both diseases in the Piemontese breed. The significant single nucleotide polymorphisms (SNPs) allowed the identification of some genes (NTN3, KCNH1, KCNH2, and KANK3) for which a possible role in the pathologies can be hypothesized. The real involvement of these genes needs to be further investigated and validated. Abstract Arthrogryposis and macroglossia are congenital pathologies known in several cattle breeds, including Piemontese. As variations in single genes were identified as responsible for arthrogryposis in some breeds, we decided: (i) to test the hypothesis of a similar genetic determinism for arthrogryposis in the Piemontese breed by genotyping affected and healthy animals with a high-density chip and applying genome-wide association study (GWAS), FST and canonical discriminant analysis (CDA) procedures, and (ii) to investigate with the same approach the genetic background of macroglossia, for which no genetic studies exist so far. The study included 125 animals (63 healthy, 30 with arthrogryposis, and 32 with macroglossia). Differently from what reported for other breeds, the analysis did not evidence a single strong association with the two pathologies. Rather, 23 significant markers on different chromosomes were found (7 associated to arthrogryposis, 11 to macroglossia, and 5 to both pathologies), suggesting a multifactorial genetic mechanism underlying both diseases in the Piemontese breed. In the 100-kb interval surrounding the significant SNPs, 20 and 26 genes were identified for arthrogryposis and macroglossia, respectively, with 12 genes in common to both diseases. For some genes (NTN3, KCNH1, KCNH2, and KANK3), a possible role in the pathologies can be hypothesized, being involved in processes related to muscular or nervous tissue development. The real involvement of these genes needs to be further investigated and validated.
Collapse
Affiliation(s)
- Liliana Di Stasio
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Baccini 2, 10095 Grugliasco (TO), Italy; (A.P.); (G.G.)
- Correspondence:
| | - Andrea Albera
- Associazione Nazionale Allevatori Bovini di Razza Piemontese, strada provinciale Trinita’ 31/A, 12061 Carrù (CN), Italy;
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Baccini 2, 10095 Grugliasco (TO), Italy; (A.P.); (G.G.)
| | - Alberto Cesarani
- Department of Agriculture, University of Sassari, Via De Nicola 9, 07100 Sassari, Italy; (A.C.); (N.P.P.M.)
| | - Nicolò P. P. Macciotta
- Department of Agriculture, University of Sassari, Via De Nicola 9, 07100 Sassari, Italy; (A.C.); (N.P.P.M.)
| | - Giustino Gaspa
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Baccini 2, 10095 Grugliasco (TO), Italy; (A.P.); (G.G.)
| |
Collapse
|
21
|
Cesarani A, Gaspa G, Pauciullo A, Degano L, Vicario D, Macciotta NPP. Genome-wide analysis of homozygosity regions in european simmental bulls. J Anim Breed Genet 2020; 138:69-79. [PMID: 33263211 DOI: 10.1111/jbg.12502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/08/2020] [Accepted: 07/18/2020] [Indexed: 01/15/2023]
Abstract
The study of Runs of Homozygosity (ROH) is a useful approach for the characterization of the genome of livestock populations. Due to their high relationship with autozygosity, ROH allow to make inference about population genetic history, to estimate the level of inbreeding, to assess within breed heterogeneity and to detect the footprints of selection on livestock genomes. Aim of this study was to investigate the distribution of runs of homozygosity in bulls belonging to five European Simmental populations and to assess the relationship between three production traits (milk yield, fat and protein contents) and autozygosity. ROH count, distribution and ROH-based coefficient of inbreeding (FROH ) were calculated for 3,845 Simmental bulls of five different European countries: Austria (AT), Switzerland (CH), Czech Republic (CZ), Germany (DE) and Italy (IT). Average values of ROH number per animal, and total genome length covered by ROH were 77.8 ± 20.7 and 205 ± 74.4 Mb, respectively. Bulls from AT, DE and IT exhibited similar ROH characteristics. Swiss animals showed the highest (12.6%), while CZ the lowest (4.6%) FROH coefficient. The relationship between ROH occurrence and milk production traits was investigated through a genome-wide ROH-traits association analysis (GWRA). A total of 34 regions previously associated with milk traits (yield and/or composition) were identified by GWRA. Results of the present research highlight a mixed genetic background in the 5 European Simmental populations, with the possible presence of three subgroups. Moreover, a strong relationship between autozygosity and production traits has been detected.
Collapse
Affiliation(s)
- Alberto Cesarani
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.,Associazione Nazionale Allevatori Pezzata Rossa Italiana (ANAPRI), Udine, Italy
| | - Giustino Gaspa
- Department of Agricultural, Forestry and Alimentary Sciences, University of Torino, Grugliasco, Italy
| | - Alfredo Pauciullo
- Department of Agricultural, Forestry and Alimentary Sciences, University of Torino, Grugliasco, Italy
| | - Lorenzo Degano
- Associazione Nazionale Allevatori Pezzata Rossa Italiana (ANAPRI), Udine, Italy
| | - Daniele Vicario
- Associazione Nazionale Allevatori Pezzata Rossa Italiana (ANAPRI), Udine, Italy
| | | |
Collapse
|