1
|
Chhibbar P, Das J. Machine learning approaches enable the discovery of therapeutics across domains. Mol Ther 2025:S1525-0016(25)00275-8. [PMID: 40186352 DOI: 10.1016/j.ymthe.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025] Open
Abstract
Multi-modal datasets have grown exponentially in the last decade. This has created an enormous demand for machine learning models that can predict complex outcomes by leveraging cellular, molecular, and humoral profiles. Corresponding inference of mechanisms can help to uncover new therapeutic targets. Here, we discuss how biological principles guide the design of predictive models and how interpretable machine learning can lead to novel mechanistic insights. We provide descriptions of multiple learning techniques and how suited they are to domain adaptations. Finally, we talk about broad learning capabilities of foundation models on large datasets and whether they can be used to provide meaningful inference about biological datasets.
Collapse
Affiliation(s)
- Prabal Chhibbar
- Centre for Systems Immunology, Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Integrative Systems Biology PhD Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Jishnu Das
- Centre for Systems Immunology, Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
2
|
Bedi D, Hassan M, Yirsaw A, Vikas B, Datta P, Samuel T. The immunopeptidome of colon cancer cells treated with topoisomerase inhibiting drug reveals differential as well as common endogenous protein sampling and display of MHC I-associated peptides. Mol Cell Oncol 2025; 12:2471640. [PMID: 40051755 PMCID: PMC11881837 DOI: 10.1080/23723556.2025.2471640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/05/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025]
Abstract
Immunotherapy options for microsatellite stable (MSS) colorectal cancer are currently very limited. The lack of detectably unique or altered immunogens in the tumor microenvironment may be a factor. Radiation and chemotherapy may enhance immunotherapy by increasing cancer cell visibility through Major Histocompatibility Complex I (MHC I) expression. To investigate this, we treated MSS and microsatellite-instable (MSI) colon cancer cells with a topoisomerase inhibitor and analyzed MHC I-associated peptides. Treatment increased peptide numbers by 5% in RKO (MSI) cells and 83% in SW620 (MSS) cells, with 40-50% of peptides being exclusive to treatment. Additionally, clustering analysis revealed a set of peptides with uniquely conserved residues displayed only in treated MSS SW620 cells. Gene Ontology analysis of MHC I-displayed proteins revealed a treatment-induced increase in extracellular vesicle- and nuclear-derived proteins, alongside reduced cytosolic protein sampling. Overall, we present evidence for treatment-inducible differential display of peptides, some of which may affect interactions and functions of immune cells. Given the multitude of factors that modulate the effects of increased MHC I expression and associated peptides, further studies are needed to elucidate the pathophysiological implications of these changes.
Collapse
Affiliation(s)
- Deepa Bedi
- Departments of Pathobiology and Biomedical Sciences, Tuskegee University, College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL, USA
| | - Mohammed Hassan
- Departments of Pathobiology and Biomedical Sciences, Tuskegee University, College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL, USA
| | - Alehegne Yirsaw
- Departments of Pathobiology and Biomedical Sciences, Tuskegee University, College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL, USA
| | - Biba Vikas
- Departments of Pathobiology and Biomedical Sciences, Tuskegee University, College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL, USA
| | - Pran Datta
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Temesgen Samuel
- Departments of Pathobiology and Biomedical Sciences, Tuskegee University, College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL, USA
| |
Collapse
|
3
|
Hu Z, Guo X, Li Z, Meng Z, Huang S. The neoantigens derived from transposable elements - A hidden treasure for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189126. [PMID: 38849060 DOI: 10.1016/j.bbcan.2024.189126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Neoantigen-based therapy is a promising approach that selectively activates the immune system of the host to recognize and eradicate cancer cells. Preliminary clinical trials have validated the feasibility, safety, and immunogenicity of personalized neoantigen-directed vaccines, enhancing their effectiveness and broad applicability in immunotherapy. While many ongoing oncological trials concentrate on neoantigens derived from mutations, these targets do not consistently provoke an immune response in all patients harboring the mutations. Additionally, tumors like ovarian cancer, which have a low tumor mutational burden (TMB), may be less amenable to mutation-based neoantigen therapies. Recent advancements in next-generation sequencing and bioinformatics have uncovered a rich source of neoantigens from non-canonical RNAs associated with transposable elements (TEs). Considering the substantial presence of TEs in the human genome and the proven immunogenicity of TE-derived neoantigens in various tumor types, this review investigates the latest findings on TE-derived neoantigens, examining their clinical implications, challenges, and unique advantages in enhancing tumor immunotherapy.
Collapse
Affiliation(s)
- Zhixiang Hu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyi Guo
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ziteng Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Shenglin Huang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Pongcharoen S, Kaewsringam N, Somaparn P, Roytrakul S, Maneerat Y, Pintha K, Topanurak S. Immunopeptidomics in the cancer immunotherapy era. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:801-817. [PMID: 39280250 PMCID: PMC11390293 DOI: 10.37349/etat.2024.00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/06/2024] [Indexed: 09/18/2024] Open
Abstract
Cancer is the primary cause of death worldwide, and conventional treatments are painful, complicated, and have negative effects on healthy cells. However, cancer immunotherapy has emerged as a promising alternative. Principle of cancer immunotherapy is the re-activation of T-cell to combat the tumor that presents the peptide antigen on major histocompatibility complex (MHC). Those peptide antigens are identified with the set of omics technology, proteomics, genomics, and bioinformatics, which referred to immunopeptidomics. Indeed, immunopeptidomics can identify the neoantigens that are very useful for cancer immunotherapies. This review explored the use of immunopeptidomics for various immunotherapies, i.e., peptide-based vaccines, immune checkpoint inhibitors, oncolytic viruses, and chimeric antigen receptor T-cell. We also discussed how the diversity of neoantigens allows for the discovery of novel antigenic peptides while post-translationally modified peptides diversify the overall peptides binding to MHC or so-called MHC ligandome. The development of immunopeptidomics is keeping up-to-date and very active, particularly for clinical application. Immunopeptidomics is expected to be fast, accurate and reliable for the application for cancer immunotherapies.
Collapse
Affiliation(s)
- Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| | - Nongphanga Kaewsringam
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Poorichaya Somaparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang 12120, Pathum Thani, Thailand
| | - Yaowapa Maneerat
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Supachai Topanurak
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
5
|
Liu M, Zhao Z, Wang C, Sang S, Cui Y, Lv C, Yang X, Zhang N, Xiong K, Chen B, Dong Q, Liu K, Gu Y. Harnessing genetic interactions for prediction of immune checkpoint inhibitors response signature in cancer cells. Cancer Lett 2024; 594:216991. [PMID: 38797232 DOI: 10.1016/j.canlet.2024.216991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Genetic interactions (GIs) refer to two altered genes having a combined effect that is not seen individually. They play a crucial role in influencing drug efficacy. We utilized CGIdb 2.0 (http://www.medsysbio.org/CGIdb2/), an updated database of comprehensively published GIs information, encompassing synthetic lethality (SL), synthetic viability (SV), and chemical-genetic interactions. CGIdb 2.0 elucidates GIs relationships between or within protein complex models by integrating protein-protein physical interactions. Additionally, we introduced GENIUS (GENetic Interactions mediated drUg Signature) to leverage GIs for identifying the response signature of immune checkpoint inhibitors (ICIs). GENIUS identified high MAP4K4 expression as a resistant signature and high HERC4 expression as a sensitive signature for ICIs treatment. Melanoma patients with high expression of MAP4K4 were associated with decreased efficacy and poorer survival following ICIs treatment. Conversely, overexpression of HERC4 in melanoma patients correlated with a positive response to ICIs. Notably, HERC4 enhances sensitivity to immunotherapy by facilitating antigen presentation. Analyses of immune cell infiltration and single-cell data revealed that B cells expressing MAP4K4 may contribute to resistance to ICIs in melanoma. Overall, CGIdb 2.0, provides integrated GIs data, thus serving as a crucial tool for exploring drug effects.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhangxiang Zhao
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Chengyu Wang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Shaocong Sang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yanrui Cui
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chen Lv
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiuqi Yang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Nan Zhang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kai Xiong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Qi Dong
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Kaidong Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Celis-Giraldo C, Ordoñez D, Díaz-Arévalo D, Bohórquez MD, Ibarrola N, Suárez CF, Rodríguez K, Yepes Y, Rodríguez A, Avendaño C, López-Abán J, Manzano-Román R, Patarroyo MA. Identifying major histocompatibility complex class II-DR molecules in bovine and swine peripheral blood monocyte-derived macrophages using mAb-L243. Vaccine 2024; 42:3445-3454. [PMID: 38631956 DOI: 10.1016/j.vaccine.2024.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Major histocompatibility complex class II (MHC-II) molecules are involved in immune responses against pathogens and vaccine candidates' immunogenicity. Immunopeptidomics for identifying cancer and infection-related antigens and epitopes have benefited from advances in immunopurification methods and mass spectrometry analysis. The mouse anti-MHC-II-DR monoclonal antibody L243 (mAb-L243) has been effective in recognising MHC-II-DR in both human and non-human primates. It has also been shown to cross-react with other animal species, although it has not been tested in livestock. This study used mAb-L243 to identify Staphylococcus aureus and Salmonella enterica serovar Typhimurium peptides binding to cattle and swine macrophage MHC-II-DR molecules using flow cytometry, mass spectrometry and two immunopurification techniques. Antibody cross-reactivity led to identifying expressed MHC-II-DR molecules, together with 10 Staphylococcus aureus peptides in cattle and 13 S. enterica serovar Typhimurium peptides in swine. Such data demonstrates that MHC-II-DR expression and immunocapture approaches using L243 mAb represents a viable strategy for flow cytometry and immunopeptidomics analysis of bovine and swine antigen-presenting cells.
Collapse
Affiliation(s)
- Carmen Celis-Giraldo
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia; PhD Programme in Tropical Health and Development, Doctoral School "Studii Salamantini", Universidad de Salamanca, Salamanca, Spain
| | - Diego Ordoñez
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia; PhD Programme in Tropical Health and Development, Doctoral School "Studii Salamantini", Universidad de Salamanca, Salamanca, Spain
| | - Diana Díaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Michel D Bohórquez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; MSc Programme in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Nieves Ibarrola
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-University of Salamanca, Salamanca, Spain
| | - Carlos F Suárez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Kewin Rodríguez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Yoelis Yepes
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Alexander Rodríguez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Catalina Avendaño
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, National Medical Center, Duarte, CA, United States
| | - Julio López-Abán
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca - Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca), Pharmacy Faculty, Universidad de Salamanca, C/ L. Méndez Nieto s/n, 37007 Salamanca, Spain
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca - Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca), Pharmacy Faculty, Universidad de Salamanca, C/ L. Méndez Nieto s/n, 37007 Salamanca, Spain
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
7
|
Wei H, Dong C, Li X. Treatment Options for Hepatocellular Carcinoma Using Immunotherapy: Present and Future. J Clin Transl Hepatol 2024; 12:389-405. [PMID: 38638377 PMCID: PMC11022065 DOI: 10.14218/jcth.2023.00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 04/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer, and the body's immune responses greatly affect its progression and the prognosis of patients. Immunological suppression and the maintenance of self-tolerance in the tumor microenvironment are essential responses, and these form part of the theoretical foundations of immunotherapy. In this review, we first discuss the tumor microenvironment of HCC, describe immunosuppression in HCC, and review the major biomarkers used to track HCC progression and response to treatment. We then examine antibody-based therapies, with a focus on immune checkpoint inhibitors (ICIs), monoclonal antibodies that target key proteins in the immune response (programmed cell death protein 1, anti-cytotoxic T-lymphocyte associated protein 4, and programmed death-ligand 1) which have transformed the treatment of HCC and other cancers. ICIs may be used alone or in conjunction with various targeted therapies for patients with advanced HCC who are receiving first-line treatments or subsequent treatments. We also discuss the use of different cellular immunotherapies, including T cell receptor (TCR) T cell therapy and chimeric antigen receptor (CAR) T cell therapy. We then review the use of HCC vaccines, adjuvant immunotherapy, and oncolytic virotherapy, and describe the goals of future research in the development of treatments for HCC.
Collapse
Affiliation(s)
- Hongbin Wei
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, Gansu, China
- Cancer Prevention and Treatment Center of Lanzhou University School of Medicine, Lanzhou, Gansu, China
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou, Gansu, China
- Clinical Research Center for General Surgery of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
8
|
Wang Y, Zhang W, Shi R, Luo Y, Feng Z, Chen Y, Zhang Q, Zhou Y, Liang J, Ye X, Feng Q, Zhang X, Xu M. Identification of HLA-A*11:01 and A*02:01-Restricted EBV Peptides Using HLA Peptidomics. Viruses 2024; 16:669. [PMID: 38793551 PMCID: PMC11125987 DOI: 10.3390/v16050669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Epstein-Barr Virus (EBV) is closely linked to nasopharyngeal carcinoma (NPC), notably prevalent in southern China. Although type II latency of EBV plays a crucial role in the development of NPC, some lytic genes and intermittent reactivation are also critical for viral propagation and tumor progression. Since T cell-mediated immunity is effective in targeted killing of EBV-positive cells, it is important to identify EBV-derived peptides presented by highly prevalent human leukocyte antigen class I (HLA-I) molecules throughout the EBV life cycle. Here, we constructed an EBV-positive NPC cell model to evaluate the presentation of EBV lytic phase peptides on streptavidin-tagged specific HLA-I molecules. Utilizing a mass spectrometry (LC-MS/MS)-based immunopeptidomic approach, we characterized eleven novel EBV peptides as well as two previously identified peptides. Furthermore, we determined these peptides were immunogenic and could stimulate PBMCs from EBV VCA/NA-IgA positive donors in an NPC endemic southern Chinese population. Overall, this work demonstrates that highly prevalent HLA-I-specific EBV peptides can be captured and functionally presented to elicit immune responses in an in vitro model, which provides insight into the epitopes presented during EBV lytic cycle and reactivation. It expands the range of viral targets for potential NPC early diagnosis and treatment.
Collapse
Affiliation(s)
- Yufei Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Wanlin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Ruona Shi
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (R.S.); (Z.F.)
| | - Yanran Luo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Zhenhuan Feng
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (R.S.); (Z.F.)
| | - Yanhong Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Qiuting Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Yan Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Jingtong Liang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Xiaoping Ye
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Qisheng Feng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Xiaofei Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (R.S.); (Z.F.)
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| |
Collapse
|
9
|
Sheikhlary S, Lopez DH, Moghimi S, Sun B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024; 14:503. [PMID: 38672519 PMCID: PMC11048403 DOI: 10.3390/biom14040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.
Collapse
Affiliation(s)
- Sara Sheikhlary
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Humberto Lopez
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Sophia Moghimi
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| |
Collapse
|
10
|
Manoutcharian K, Gevorkian G. Are we getting closer to a successful neoantigen cancer vaccine? Mol Aspects Med 2024; 96:101254. [PMID: 38354548 DOI: 10.1016/j.mam.2024.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Although significant advances in immunotherapy have revolutionized the treatment of many cancer types over the past decade, the field of vaccine therapy, an important component of cancer immunotherapy, despite decades-long intense efforts, is still transmitting signals of promises and awaiting strong data on efficacy to proceed with regulatory approval. The field of cancer vaccines faces standard challenges, such as tumor-induced immunosuppression, immune response in inhibitory tumor microenvironment (TME), intratumor heterogeneity (ITH), permanently evolving cancer mutational landscape leading to neoantigens, and less known obstacles: neoantigen gain/loss upon immunotherapy, the timing and speed of appearance of neoantigens and responding T cell clonotypes and possible involvement of immune interference/heterologous immunity, in the complex interplay between evolving tumor epitopes and the immune system. In this review, we discuss some key issues related to challenges hampering the development of cancer vaccines, along with the current approaches focusing on neoantigens. We summarize currently well-known ideas/rationales, thus revealing the need for alternative vaccine approaches. Such a discussion should stimulate vaccine researchers to apply out-of-box, unconventional thinking in search of new avenues to deal with critical, often yet unaddressed challenges on the road to a new generation of therapeutics and vaccines.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), CDMX, Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP, 04510, Mexico.
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), CDMX, Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP, 04510, Mexico.
| |
Collapse
|
11
|
Ma H, Yan QZ, Ma JR, Li DF, Yang JL. Overview of the immunological mechanisms in hepatitis B virus reactivation: Implications for disease progression and management strategies. World J Gastroenterol 2024; 30:1295-1312. [PMID: 38596493 PMCID: PMC11000084 DOI: 10.3748/wjg.v30.i10.1295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatitis B virus (HBV) reactivation is a clinically significant challenge in disease management. This review explores the immunological mechanisms underlying HBV reactivation, emphasizing disease progression and management. It delves into host immune responses and reactivation's delicate balance, spanning innate and adaptive immunity. Viral factors' disruption of this balance, as are interactions between viral antigens, immune cells, cytokine networks, and immune checkpoint pathways, are examined. Notably, the roles of T cells, natural killer cells, and antigen-presenting cells are discussed, highlighting their influence on disease progression. HBV reactivation's impact on disease severity, hepatic flares, liver fibrosis progression, and hepatocellular carcinoma is detailed. Management strategies, including anti-viral and immunomodulatory approaches, are critically analyzed. The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation. In conclusion, this comprehensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation. With a dedicated focus on understanding its implications for disease progression and the prospects of efficient management strategies, this article contributes significantly to the knowledge base. The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches, ultimately enhancing disease management and elevating patient outcomes. The dynamic landscape of management strategies is critically scrutinized, spanning anti-viral and immunomodulatory approaches. The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.
Collapse
Affiliation(s)
- Hui Ma
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Qing-Zhu Yan
- Department of Ultrasound Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jing-Ru Ma
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Dong-Fu Li
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jun-Ling Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
12
|
Caron É, Perreault C. Introduction to the Special Issue: The Immunopeptidome. Semin Immunol 2023; 69:101798. [PMID: 37348326 DOI: 10.1016/j.smim.2023.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Affiliation(s)
- Étienne Caron
- CHU Sainte-Justine Research Center, and Department of Pathology and Cellular Biology, Université de Montréal, Montréal, Québec, Canada.
| | - Claude Perreault
- Institute for Immunology and Cancer, and Department of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|