1
|
Schaefke B, Li J, Zhao B, Wang L, Tseng YT. Slumber under pressure: REM sleep and stress response. Prog Neurobiol 2025:102771. [PMID: 40273975 DOI: 10.1016/j.pneurobio.2025.102771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
Sleep, a state of reduced responsiveness and distinct brain activity, is crucial across the animal kingdom. This review explores the potential adaptive functions of REM sleep in adapting to stress, emphasizing its role in memory consolidation, emotional regulation, and threat processing. We further explore the underlying neural mechanisms linking stress responses to REM sleep. By synthesizing current findings, we propose that REM sleep allows animals to "rehearse" or simulate responses to danger in a secure, offline state, while also maintaining emotional balance. Environmental factors, such as predation risk and social dynamics, further influence REM sleep. This modulation may enhance survival by optimizing stress responses while fulfilling physiological needs in animals. Insights into REM sleep's role in animals may shed light on human sleep in the context of modern stressors and sleep disruptions. This review also explores the complex interplay between stress, immunity, sleep disruptions-particularly involving REM sleep-and their evolutionary underpinnings.
Collapse
Affiliation(s)
- Bernhard Schaefke
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Jingfei Li
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Science, Beijing, 10049, China
| | - Binghao Zhao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences.
| | - Yu-Ting Tseng
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences.
| |
Collapse
|
2
|
Li MF, Lecheko P, Phuthing T, Lesholu T, Samson DR. Low-to-Moderate Daytime Physical Activities Predicted Higher-Quality Sleep Among Habitually Active Agropastoralists. Am J Hum Biol 2025; 37:e70008. [PMID: 39912199 PMCID: PMC11800054 DOI: 10.1002/ajhb.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/07/2025] Open
Abstract
INTRODUCTION The positive effects of physical activity (PA) on sleep are widely promoted by public health organizations and supported by abundant empirical evidence. Nonetheless, there remains a dearth of studies investigating the association between daytime PA and nighttime sleep among non-urban and nonindustrial populations that habitually engage in PA as part of their subsistence strategy. METHODS Here, we examined the bidirectional relationship between PA and sleep. We also looked at age, gender, and occupation-level differences in moderate-to-vigorous-intensity PA (MVPA), low-intensity PA (LPA), and sedentary activity durations among Basotho and Xhoxa agropastoralists residing in rural villages in the Eastern Cape, South Africa. We analyzed activity and sleep data collected from 113 individuals using MotionWatch actigraphy wristwatches across three field seasons (7111 individual days). RESULTS Percentage daily total MVPA decreased with age, though older participants maintained low activity levels and did not suffer from poorer sleep compared to younger participants. Herders spent more percentage of their day in higher-intensity activity than non-herders. Overall, women had greater daily percentage MVPA and lower percentage sedentary activity than men. Durations of total MVPA and LPA decreased total sleep time (TST) and improved sleep quality (increased sleep efficiency (SE), decreased fragmentation, and decreased percentage wake after sleep onset). Daytime PA measures were not affected by sleep duration or quality from the previous night. CONCLUSIONS Among this group of habitually active agropastoralists, low-to-moderate-intensity PA durations consistently predicted higher sleep quality. Our findings showed that sleep quality was more strongly affected by PA than sleep duration.
Collapse
Affiliation(s)
- Ming Fei Li
- Department of AnthropologyUniversity of TorontoTorontoOntarioCanada
| | | | - Tumelo Phuthing
- Mehloding Community Tourism TrustMatatieleEastern CapeSouth Africa
| | - Tsepo Lesholu
- Mehloding Community Tourism TrustMatatieleEastern CapeSouth Africa
| | - David R. Samson
- Department of AnthropologyUniversity of Toronto MississaugaMississaugaOntarioCanada
| |
Collapse
|
3
|
Shuster AE, Morehouse A, McDevitt EA, Chen PC, Whitehurst LN, Zhang J, Sattari N, Uzoigwe T, Ekhlasi A, Cai D, Simon K, Niethard N, Mednick SC. REM refines and rescues memory representations: a new theory. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2025; 6:zpaf004. [PMID: 40161405 PMCID: PMC11954447 DOI: 10.1093/sleepadvances/zpaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/24/2024] [Indexed: 04/02/2025]
Abstract
Despite extensive evidence on the roles of nonrapid eye movement (NREM) and REM sleep in memory processing, a comprehensive model that integrates their complementary functions remains elusive due to a lack of mechanistic understanding of REM's role in offline memory processing. We present the REM Refining and Rescuing (RnR) Hypothesis, which posits that the principal function of REM sleep is to increase the signal-to-noise ratio within and across memory representations. As such, REM sleep selectively enhances essential nodes within a memory representation while inhibiting the majority (Refine). Additionally, REM sleep modulates weak and strong memory representations so they fall within a similar range of recallability (Rescue). Across multiple NREM-REM cycles, tuning functions of individual memory traces get sharpened, allowing for integration of shared features across representations. We hypothesize that REM sleep's unique cellular, neuromodulatory, and electrophysiological milieu, marked by greater inhibition and a mixed autonomic state of both sympathetic and parasympathetic activity, underpins these processes. The RnR Hypothesis offers a unified framework that explains diverse behavioral and neural outcomes associated with REM sleep, paving the way for future research and a more comprehensive model of sleep-dependent cognitive functions.
Collapse
Affiliation(s)
- Alessandra E Shuster
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Allison Morehouse
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | | | - Pin-Chun Chen
- Department of Experimental Psychology, Oxford University, Oxford, UK
| | | | - Jing Zhang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Negin Sattari
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Tracy Uzoigwe
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Ali Ekhlasi
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Denise Cai
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine Simon
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Pulmonology Department, Children’s Hospital of Orange County, Orange, CA, USA
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
4
|
Lendner JD, Lin JJ, Larsson PG, Helfrich RF. Multiple Intrinsic Timescales Govern Distinct Brain States in Human Sleep. J Neurosci 2024; 44:e0171242024. [PMID: 39187378 PMCID: PMC11484545 DOI: 10.1523/jneurosci.0171-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Human sleep exhibits multiple, recurrent temporal regularities, ranging from circadian rhythms to sleep stage cycles and neuronal oscillations during nonrapid eye movement sleep. Moreover, recent evidence revealed a functional role of aperiodic activity, which reliably discriminates different sleep stages. Aperiodic activity is commonly defined as the spectral slope χ of the 1/frequency (1/fχ) decay function of the electrophysiological power spectrum. However, several lines of inquiry now indicate that the aperiodic component of the power spectrum might be better characterized by a superposition of several decay processes with associated timescales. Here, we determined multiple timescales, which jointly shape aperiodic activity using human intracranial electroencephalography. Across three independent studies (47 participants, 23 female), our results reveal that aperiodic activity reliably dissociated sleep stage-dependent dynamics in a regionally specific manner. A principled approach to parametrize aperiodic activity delineated several, spatially and state-specific timescales. Lastly, we employed pharmacological modulation by means of propofol anesthesia to disentangle state-invariant timescales that may reflect physical properties of the underlying neural population from state-specific timescales that likely constitute functional interactions. Collectively, these results establish the presence of multiple intrinsic timescales that define the electrophysiological power spectrum during distinct brain states.
Collapse
Affiliation(s)
- Janna D Lendner
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, Tübingen 72076, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen, Tübingen 72076, Germany
| | - Jack J Lin
- Department of Neurology, UC Davis, Sacramento, California 95816
- Center for Mind and Brain, UC Davis, Davis, California 95618
| | - Pål G Larsson
- Department of Neurosurgery, University of Oslo Medical Center, Oslo 0372, Norway
| | - Randolph F Helfrich
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, Tübingen 72076, Germany
| |
Collapse
|
5
|
Höhn C, Hahn MA, Lendner JD, Hoedlmoser K. Spectral Slope and Lempel-Ziv Complexity as Robust Markers of Brain States during Sleep and Wakefulness. eNeuro 2024; 11:ENEURO.0259-23.2024. [PMID: 38471778 PMCID: PMC10978822 DOI: 10.1523/eneuro.0259-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Nonoscillatory measures of brain activity such as the spectral slope and Lempel-Ziv complexity are affected by many neurological disorders and modulated by sleep. A multitude of frequency ranges, particularly a broadband (encompassing the full spectrum) and a narrowband approach, have been used especially for estimating the spectral slope. However, the effects of choosing different frequency ranges have not yet been explored in detail. Here, we evaluated the impact of sleep stage and task engagement (resting, attention, and memory) on slope and complexity in a narrowband (30-45 Hz) and broadband (1-45 Hz) frequency range in 28 healthy male human subjects (21.54 ± 1.90 years) using a within-subject design over 2 weeks with three recording nights and days per subject. We strived to determine how different brain states and frequency ranges affect slope and complexity and how the two measures perform in comparison. In the broadband range, the slope steepened, and complexity decreased continuously from wakefulness to N3 sleep. REM sleep, however, was best discriminated by the narrowband slope. Importantly, slope and complexity also differed between tasks during wakefulness. While narrowband complexity decreased with task engagement, the slope flattened in both frequency ranges. Interestingly, only the narrowband slope was positively correlated with task performance. Our results show that slope and complexity are sensitive indices of brain state variations during wakefulness and sleep. However, the spectral slope yields more information and could be used for a greater variety of research questions than Lempel-Ziv complexity, especially when a narrowband frequency range is used.
Collapse
Affiliation(s)
- Christopher Höhn
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria
| | - Michael A Hahn
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, 72076 Tübingen, Germany
| | - Janna D Lendner
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, 72076 Tübingen, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen, 72076 Tübingen, Germany
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
6
|
Aragón-Villalba G, Munoz-Quintana G, Rubin de Celis GN, Torres-Hortelano JM, Espinosa de Santillana IA. Efficacy of Roncolab mobile application for diagnosing the primary sign of sleep-disordered breathing (snoring) in children. ACTA ODONTOLOGICA LATINOAMERICANA : AOL 2023; 36:150-155. [PMID: 38345276 PMCID: PMC10867856 DOI: 10.54589/aol.36/3/150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/01/2023] [Indexed: 02/15/2024]
Abstract
Sleep-disordered breathing (SDB) is a group of disorders associated with breathing anomalies during sleep. Easily detectable by sound, snoring is one of the most common manifestations and the main sign of SDB. Snoring is characteristic of breathing sound during sleep, without apnea, hypoventilation, or interrupted sleep. It may reduce the percentage of sleep and increase microarousals due to breathing effort or gas exchange. A range of questionnaires have been validated and adapted to the pediatric population to screen for patients who require laboratory testing. The Pediatric Sleep Questionnaire (PSQ) screens for SDB and identifies primary signs such as snoring. RoncoLab is a mobile application that records and measures snoring intensity and frequency. Aim To compare the RoncoLab app and the PSQ regarding how efficiently they diagnose snoring. Materials and Method This was an observational, analytical study of 31 children aged 7 to 11 years who visited the pediatric dental clinic at Benemérita Universidad Autónoma de Puebla, Mexico (BUAP). The PSQ was applied to diagnose SDB. Guardians were then instructed on how to download and use the mobile application to record data while the child was sleeping at home. Agreement between RoncoLab and the PSQ was analyzed statistically by Cohen's Kappa index at 95% confidence level. Results The Kappa index for identification of primary snoring was 0.743 (p<0.05). App sensitivity was 0.92, and specificity 0.82. Conclusion There is good agreement between PSQ and RoncoLab for diagnosing primary snoring, with acceptable sensitivity and specificity.
Collapse
Affiliation(s)
- Gerardo Aragón-Villalba
- Benemérita Universidad Autónoma de Puebla, Estomatología, Terminal Pediatría Maestría en Estomatología, Puebla México
| | - Gabriel Munoz-Quintana
- Benemérita Universidad Autónoma de Puebla, Estomatología, Terminal Pediatría Maestría en Estomatología, Puebla México
| | - Gisela N Rubin de Celis
- Benemérita Universidad Autónoma de Puebla, Estomatología, Terminal Pediatría Maestría en Estomatología, Puebla México
| | | | | |
Collapse
|
7
|
Anthoney N, Tainton-Heap L, Luong H, Notaras E, Kewin AB, Zhao Q, Perry T, Batterham P, Shaw PJ, van Swinderen B. Experimentally induced active and quiet sleep engage non-overlapping transcriptional programs in Drosophila. eLife 2023; 12:RP88198. [PMID: 37910019 PMCID: PMC10619980 DOI: 10.7554/elife.88198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Sleep in mammals can be broadly classified into two different physiological categories: rapid eye movement (REM) sleep and slow-wave sleep (SWS), and accordingly REM and SWS are thought to achieve a different set of functions. The fruit fly Drosophila melanogaster is increasingly being used as a model to understand sleep functions, although it remains unclear if the fly brain also engages in different kinds of sleep as well. Here, we compare two commonly used approaches for studying sleep experimentally in Drosophila: optogenetic activation of sleep-promoting neurons and provision of a sleep-promoting drug, gaboxadol. We find that these different sleep-induction methods have similar effects on increasing sleep duration, but divergent effects on brain activity. Transcriptomic analysis reveals that drug-induced deep sleep ('quiet' sleep) mostly downregulates metabolism genes, whereas optogenetic 'active' sleep upregulates a wide range of genes relevant to normal waking functions. This suggests that optogenetics and pharmacological induction of sleep in Drosophila promote different features of sleep, which engage different sets of genes to achieve their respective functions.
Collapse
Affiliation(s)
- Niki Anthoney
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Lucy Tainton-Heap
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Hang Luong
- School of BioSciences, The University of MelbourneMelbourneAustralia
| | - Eleni Notaras
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Amber B Kewin
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Qiongyi Zhao
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Trent Perry
- School of BioSciences, The University of MelbourneMelbourneAustralia
| | - Philip Batterham
- School of BioSciences, The University of MelbourneMelbourneAustralia
| | - Paul J Shaw
- Department of Neuroscience, School of Medicine, Washington University in St. LouisSt LouisUnited States
| | | |
Collapse
|
8
|
Anthoney N, Tainton-Heap LA, Luong H, Notaras E, Kewin AB, Zhao Q, Perry T, Batterham P, Shaw PJ, van Swinderen B. Experimentally induced active and quiet sleep engage non-overlapping transcriptional programs in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535331. [PMID: 37066182 PMCID: PMC10103959 DOI: 10.1101/2023.04.03.535331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Sleep in mammals can be broadly classified into two different physiological categories: rapid eye movement (REM) sleep and slow wave sleep (SWS), and accordingly REM and SWS are thought to achieve a different set of functions. The fruit fly Drosophila melanogaster is increasingly being used as a model to understand sleep functions, although it remains unclear if the fly brain also engages in different kinds of sleep as well. Here, we compare two commonly used approaches for studying sleep experimentally in Drosophila: optogenetic activation of sleep-promoting neurons and provision of a sleep-promoting drug, Gaboxadol. We find that these different sleep-induction methods have similar effects on increasing sleep duration, but divergent effects on brain activity. Transcriptomic analysis reveals that drug-induced deep sleep ('quiet' sleep) mostly downregulates metabolism genes, whereas optogenetic 'active' sleep upregulates a wide range of genes relevant to normal waking functions. This suggests that optogenetics and pharmacological induction of sleep in Drosophila promote different features of sleep, which engage different sets of genes to achieve their respective functions.
Collapse
Affiliation(s)
- Niki Anthoney
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | | | - Hang Luong
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3052 Australia
| | - Eleni Notaras
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Amber B. Kewin
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Qiongyi Zhao
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Trent Perry
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3052 Australia
| | - Philip Batterham
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3052 Australia
| | - Paul J. Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO USA
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
9
|
Ren W, Zhang N, Sun Y, Pan L, Hou Y, Li D, Huang X, Liu K, Sun H, Sun Y, Lv C, Yu Y, Han F. The REM microarousal and REM duration as the potential indicator in paradoxical insomnia. Sleep Med 2023; 109:110-117. [PMID: 37429109 DOI: 10.1016/j.sleep.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 07/12/2023]
Abstract
OBJECTIVE Although paradoxical insomnia is a prevalent subtype of chronic insomnia, the etiology of it is unclear. Contrary to complaints of little or no sleep, polysomnography (PSG) findings show that paradoxical insomnia patients have near normal sleep macrostructure. The purpose of this study is to determine the changes of microstructure and explore the etiology of paradoxical insomnia. METHODS The PSG findings of 89 paradoxical insomnia patients were compared with those of 41 gender balanced healthy controls without sleep complaints. All subjects underwent nocturnal PSG recordings. Conventional PSG measures and microarousals were quantified and statistically analyzed. Receiver operating characteristic curve and correlation analysis were used to evaluate the potential of REM sleep microarousals and REM duration as indicators of paradoxical insomnia. RESULTS Compared with the controls, paradoxical insomnia patients had no significant differences in sleep macrostructures. Statistical analysis showed that non-rapid eye movement (NREM) microarousals revealed no significant differences between paradoxical insomnia patients and controls. Noticeably, more spontaneous microarousals appeared in rapid eye movement (REM) stage for paradoxical insomnia patients. Based on receiver operating characteristic curve (ROC), the optimal cutoff value of REM sleep microarousals could predict paradoxical insomnia. Furthermore, a positive correlation between microarousals in REM sleep and the duration of REM sleep was presented in paradoxical insomnia patients. CONCLUSIONS The frequency of REM microarousals and the duration of REM sleep could reflect the real sleep state of paradoxical insomnia patients. That suggested PSG investigation extended to microarousal could be helpful to understand the etiology in paradoxical insomnia.
Collapse
Affiliation(s)
- Wenjing Ren
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China; Department of the First School of Clinical Medicine, Binzhou Medical University, Binzhou, China
| | - Na Zhang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China; Department of the First School of Clinical Medicine, Binzhou Medical University, Binzhou, China
| | - Yunliang Sun
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Lei Pan
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Yanyan Hou
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Dongze Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Xiao Huang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Kuikui Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Hongliu Sun
- Department of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yeying Sun
- Department of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China; Department of the First School of Clinical Medicine, Binzhou Medical University, Binzhou, China
| | - Yan Yu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China; Department of the First School of Clinical Medicine, Binzhou Medical University, Binzhou, China.
| | - Fang Han
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China; Department of the First School of Clinical Medicine, Binzhou Medical University, Binzhou, China.
| |
Collapse
|
10
|
Zilio F, Gomez-Pilar J, Chaudhary U, Fogel S, Fomina T, Synofzik M, Schöls L, Cao S, Zhang J, Huang Z, Birbaumer N, Northoff G. Altered brain dynamics index levels of arousal in complete locked-in syndrome. Commun Biol 2023; 6:757. [PMID: 37474587 PMCID: PMC10359418 DOI: 10.1038/s42003-023-05109-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Complete locked-in syndrome (CLIS) resulting from late-stage amyotrophic lateral sclerosis (ALS) is characterised by loss of motor function and eye movements. The absence of behavioural indicators of consciousness makes the search for neuronal correlates as possible biomarkers clinically and ethically urgent. EEG-based measures of brain dynamics such as power-law exponent (PLE) and Lempel-Ziv complexity (LZC) have been shown to have explanatory power for consciousness and may provide such neuronal indices for patients with CLIS. Here, we validated PLE and LZC (calculated in a dynamic way) as benchmarks of a wide range of arousal states across different reference states of consciousness (e.g., awake, sleep stages, ketamine, sevoflurane). We show a tendency toward high PLE and low LZC, with high intra-subject fluctuations and inter-subject variability in a cohort of CLIS patients with values graded along different arousal states as in our reference data sets. In conclusion, changes in brain dynamics indicate altered arousal in CLIS. Specifically, PLE and LZC are potentially relevant biomarkers to identify or diagnose the arousal level in CLIS and to determine the optimal time point for treatment, including communication attempts.
Collapse
Affiliation(s)
- Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, Padua, Italy.
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain
| | - Ujwal Chaudhary
- BrainPortal Technologies GmbH, Mannheim, Germany
- ALS Voice gGmbH, Mössingen, Germany
| | - Stuart Fogel
- School of Psychology, University of Ottawa, Ottawa, Canada
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Tatiana Fomina
- Department for Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Shumei Cao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zirui Huang
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Niels Birbaumer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| |
Collapse
|
11
|
Künstler ECS, Bublak P, Finke K, Koranyi N, Meinhard M, Schwab M, Rupprecht S. The Relationship Between Cognitive Impairments and Sleep Quality Measures in Persistent Insomnia Disorder. Nat Sci Sleep 2023; 15:491-498. [PMID: 37408565 PMCID: PMC10319274 DOI: 10.2147/nss.s399644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/25/2023] [Indexed: 07/07/2023] Open
Abstract
Study Objectives Persistent insomnia disorder (pID) is linked to neurocognitive decline and increased risk of Alzheimer's Disease (AD) in later life. However, research in this field often utilizes self-reported sleep quality data - which may be biased by sleep misperception - or uses extensive neurocognitive test batteries - which are often not feasible in clinical settings. This study therefore aims to assess whether a simple screening tool could uncover a specific pattern of cognitive changes in pID patients, and whether these relate to objective aspect(s) of sleep quality. Methods Neurocognitive performance (Montreal Cognitive Assessment; MoCA), anxiety/depression severity, and subjective sleep quality (Pittsburgh Sleep Quality Index: PSQI; Insomnia Severity Index: ISI) data were collected from 22 middle-aged pID patients and 22 good-sleepers. Patients underwent overnight polysomnography. Results Compared to good-sleepers, patients had lower overall cognitive performance (average: 24.6 versus 26.3 points, Mann-Whitney U = 136.5, p = <0.006), with deficits in clock drawing and verbal abstraction. In patients, poorer overall cognitive performance correlated with reduced subjective sleep quality (PSQI: r(42) = -0.47, p = 0.001; and ISI: r(42) = -0.43, p = 0.004), reduced objective sleep quality (lower sleep efficiency: r(20) = 0.59, p = 0.004 and less REM-sleep: r(20) = 0.52, p = 0.013; and increased sleep latency: r(20) = -0.57, p = 0.005 and time awake: r(20) = -0.59, p = 0.004). Cognitive performance was not related to anxiety/depression scores. Conclusion Using a simple neurocognitive screening tool, we found that pID patients showed cognitive deficiencies that related to both subjective/self-reported and objective/polysomnographic measures of sleep quality. Furthermore, these cognitive changes resembled those seen in preclinical non-amnestic AD, and thus could indicate incumbent neurodegenerative processes in pID. Interestingly, increased REM-sleep was correlated with better cognitive performance. However, whether REM-sleep is protective against neurodegeneration requires further investigation.
Collapse
Affiliation(s)
- Erika C S Künstler
- Department of Neurology, Jena University Hospital, Jena, Germany
- Interdisciplinary Centre for Sleep and Ventilatory Medicine, Jena University Hospital, Jena, Germany
| | - Peter Bublak
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Kathrin Finke
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nicolas Koranyi
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Marie Meinhard
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
- Interdisciplinary Centre for Sleep and Ventilatory Medicine, Jena University Hospital, Jena, Germany
| | - Sven Rupprecht
- Department of Neurology, Jena University Hospital, Jena, Germany
- Interdisciplinary Centre for Sleep and Ventilatory Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
12
|
Schiller K, von Ellenrieder N, Avigdor T, El Kosseifi C, Abdallah C, Minato E, Gotman J, Frauscher B. Focal epilepsy impacts rapid eye movement sleep microstructure. Sleep 2023; 46:zsac250. [PMID: 36242588 PMCID: PMC9905780 DOI: 10.1093/sleep/zsac250] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
STUDY OBJECTIVES Whereas there is plenty of evidence on the influence of epileptic activity on non-rapid eye movement (NREM) sleep macro- and micro-structure, data on the impact of epilepsy on rapid eye movement (REM) sleep remains sparse. Using high-density electroencephalography (HD-EEG), we assessed global and focal disturbances of sawtooth waves (STW) as cortically generated sleep oscillations of REM sleep in patients with focal epilepsy. METHODS Twenty-two patients with drug-resistant focal epilepsy (13 females; mean age, 32.6 ± 10.7 years; 12 temporal lobe epilepsy) and 12 healthy controls (3 females; 24.0 ± 3.2 years) underwent combined overnight HD-EEG and polysomnography. STW rate, duration, frequency, power, spatial extent, IED rates and sleep homeostatic properties were analyzed. RESULTS STW rate and duration were reduced in patients with focal epilepsy compared to healthy controls (rate: 0.64/min ± 0.46 vs. 1.12/min ± 0.41, p = .005, d = -0.98; duration: 3.60 s ± 0.76 vs. 4.57 ± 1.00, p = .003, d = -1.01). Not surprisingly given the fronto-central maximum of STW, the reductions were driven by extratemporal lobe epilepsy patients (rate: 0.45/min ± 0.31 vs. 1.12/min ± 0.41, p = .0004, d = -1.35; duration: 3.49 s ± 0.92 vs. 4.57 ± 1.00, p = .017, d = -0.99) and were more pronounced in the first vs. the last sleep cycle (rate first cycle patients vs. controls: 0.60/min ± 0.49 vs. 1.10/min ± 0.55, p = .016, d = -0.90, rate last cycle patients vs. controls: 0.67/min ± 0.51 vs. 0.99/min ± 0.49, p = .11, d = -0.62; duration first cycle patients vs. controls: 3.60s ± 0.76 vs. 4.57 ± 1.00, p = .003, d = -1.01, duration last cycle patients vs. controls: 3.66s ± 0.84 vs. 4.51 ± 1.26, p = .039, d = -0.80). There was no regional decrease of STWs in the region with the epileptic focus vs. the contralateral side (all p > .05). CONCLUSION Patients with focal epilepsy and in particular extratemporal lobe epilepsy show a global reduction of STW activity in REM sleep. This may suggest that epilepsy impacts cortically generated sleep oscillations even in REM sleep when epileptic activity is low.
Collapse
Affiliation(s)
- Katharina Schiller
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
- Hospital Group Ostallgaeu-Kaufbeuren, Department of Pediatrics, Kaufbeuren, Germany
- Medical University Innsbruck, Department of Pediatrics, Innsbruck, Austria
| | | | - Tamir Avigdor
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Charbel El Kosseifi
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Chifaou Abdallah
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Erica Minato
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
- Department of Medicine and Center for Neuroscience Studies, Queen’s University; Kingston, Ontario, Canada
| |
Collapse
|
13
|
Guo R, Wang Y, Yan R, Chen B, Ding W, Gorczyca MT, Ozsoy S, Cai L, Hines RL, Tseng GC, Allocca G, Dong Y, Fang J, Huang YH. Rapid Eye Movement Sleep Engages Melanin-Concentrating Hormone Neurons to Reduce Cocaine Seeking. Biol Psychiatry 2022; 92:880-894. [PMID: 35953320 PMCID: PMC9872495 DOI: 10.1016/j.biopsych.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Persistent sleep disruptions following withdrawal from abused drugs may hold keys to battle drug relapse. It is posited that there may be sleep signatures that predict relapse propensity, identifying which may open new avenues for treating substance use disorders. METHODS We trained male rats (approximately postnatal day 56) to self-administer cocaine. After long-term drug withdrawal (approximately postnatal day 100), we examined the correlations between the intensity of cocaine seeking and key sleep features. To test for causal relationships, we then used behavioral, chemogenetic, or optogenetic methods to selectively increase rapid eye movement sleep (REMS) and measured behavioral and electrophysiological outcomes to probe for cellular and circuit mechanisms underlying REMS-mediated regulation of cocaine seeking. RESULTS A selective set of REMS features was preferentially associated with the intensity of cue-induced cocaine seeking after drug withdrawal. Moreover, selectively increasing REMS time and continuity by environmental warming attenuated a withdrawal time-dependent intensification of cocaine seeking, or incubation of cocaine craving, suggesting that REMS may benefit withdrawal. Warming increased the activity of lateral hypothalamic melanin-concentrating hormone (MCH) neurons selectively during prolonged REMS episodes and counteracted cocaine-induced synaptic accumulation of calcium-permeable AMPA receptors in the nucleus accumbens-a critical substrate for incubation. Finally, the warming effects were partly mimicked by chemogenetic or optogenetic stimulations of MCH neurons during sleep, or intra-accumbens infusions of MCH peptide during the rat's inactive phase. CONCLUSIONS REMS may encode individual vulnerability to relapse, and MCH neuron activities can be selectively targeted during REMS to reduce drug relapse.
Collapse
Affiliation(s)
- Rong Guo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yao Wang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rongzhen Yan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bo Chen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wanqiao Ding
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael T Gorczyca
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sahin Ozsoy
- Somnivore Pty. Ltd., Bacchus Marsh, Victoria, Australia
| | - Li Cai
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rachel L Hines
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Giancarlo Allocca
- Somnivore Pty. Ltd., Bacchus Marsh, Victoria, Australia; Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Yan Dong
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jidong Fang
- Department of Psychiatry and Behavioral Health, Penn State College of Medicine, Hershey, Pennsylvania
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
14
|
Sleep, circadian biology and skeletal muscle interactions: Implications for metabolic health. Sleep Med Rev 2022; 66:101700. [PMID: 36272396 DOI: 10.1016/j.smrv.2022.101700] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/07/2022]
Abstract
There currently exists a modern epidemic of sleep loss, triggered by the changing demands of our 21st century lifestyle that embrace 'round-the-clock' remote working hours, access to energy-dense food, prolonged periods of inactivity, and on-line social activities. Disturbances to sleep patterns impart widespread and adverse effects on numerous cells, tissues, and organs. Insufficient sleep causes circadian misalignment in humans, including perturbed peripheral clocks, leading to disrupted skeletal muscle and liver metabolism, and whole-body energy homeostasis. Fragmented or insufficient sleep also perturbs the hormonal milieu, shifting it towards a catabolic state, resulting in reduced rates of skeletal muscle protein synthesis. The interaction between disrupted sleep and skeletal muscle metabolic health is complex, with the mechanisms underpinning sleep-related disturbances on this tissue often multifaceted. Strategies to promote sufficient sleep duration combined with the appropriate timing of meals and physical activity to maintain circadian rhythmicity are important to mitigate the adverse effects of inadequate sleep on whole-body and skeletal muscle metabolic health. This review summarises the complex relationship between sleep, circadian biology, and skeletal muscle, and discusses the effectiveness of several strategies to mitigate the negative effects of disturbed sleep or circadian rhythms on skeletal muscle health.
Collapse
|
15
|
Smeltzer EA, Stead SM, Li MF, Samson D, Kumpan LT, Teichroeb JA. Social sleepers: The effects of social status on sleep in terrestrial mammals. Horm Behav 2022; 143:105181. [PMID: 35594742 DOI: 10.1016/j.yhbeh.2022.105181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022]
Abstract
Social status among group-living mammals can impact access to resources, such as water, food, social support, and mating opportunities, and this differential access to resources can have fitness consequences. Here, we propose that an animal's social status impacts their access to sleep opportunities, as social status may predict when an animal sleeps, where they sleep, who they sleep with, and how well they sleep. Our review of terrestrial mammals examines how sleep architecture and intensity may be impacted by (1) sleeping conditions and (2) the social experience during wakefulness. Sleeping positions vary in thermoregulatory properties, protection from predators, and exposure to parasites. Thus, if dominant individuals have priority of access to sleeping positions, they may benefit from higher quality sleeping conditions and, in turn, better sleep. With respect to waking experiences, we discuss the impacts of stress on sleep, as it has been established that specific social statuses can be characterized by stress-related physiological profiles. While much research has focused on how dominance hierarchies impact access to resources like food and mating opportunities, differential access to sleep opportunities among mammals has been largely ignored despite its potential fitness consequences.
Collapse
Affiliation(s)
- E A Smeltzer
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - S M Stead
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada.
| | - M F Li
- Department of Anthropology, University of Toronto, 19 Russell St., Toronto, Ontario M5S 2S2, Canada
| | - D Samson
- Department of Anthropology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario L5L 1C6, Canada
| | - L T Kumpan
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - J A Teichroeb
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| |
Collapse
|
16
|
Berger A, Vespa S, Dricot L, Dumoulin M, Iachim E, Doguet P, Vandewalle G, El Tahry R. How Is the Norepinephrine System Involved in the Antiepileptic Effects of Vagus Nerve Stimulation? Front Neurosci 2021; 15:790943. [PMID: 34924947 PMCID: PMC8675889 DOI: 10.3389/fnins.2021.790943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
Vagus Nerve Stimulation (VNS) is an adjunctive treatment for patients suffering from inoperable drug-resistant epilepsy. Although a complete understanding of the mediators involved in the antiepileptic effects of VNS and their complex interactions is lacking, VNS is known to trigger the release of neurotransmitters that have seizure-suppressing effects. In particular, norepinephrine (NE) is a neurotransmitter that has been associated with the clinical effects of VNS by preventing seizure development and by inducing long-term plastic changes that could restore a normal function of the brain circuitry. However, the biological requisites to become responder to VNS are still unknown. In this review, we report evidence of the critical involvement of NE in the antiepileptic effects of VNS in rodents and humans. Moreover, we emphasize the hypothesis that the functional integrity of the noradrenergic system could be a determining factor to obtain clinical benefits from the therapy. Finally, encouraging avenues of research involving NE in VNS treatment are discussed. These could lead to the personalization of the stimulation parameters to maximize the antiepileptic effects and potentially improve the response rate to the therapy.
Collapse
Affiliation(s)
- Alexandre Berger
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Synergia Medical SA, Mont-Saint-Guibert, Belgium.,GIGA-Cyclotron Research Center-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Simone Vespa
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Laurence Dricot
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Manon Dumoulin
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Evelina Iachim
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Department of Pediatric Neurology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Gilles Vandewalle
- GIGA-Cyclotron Research Center-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Riëm El Tahry
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Center for Refractory Epilepsy, Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
17
|
Bode A, Kuula L. Romantic Love and Sleep Variations: Potential Proximate Mechanisms and Evolutionary Functions. BIOLOGY 2021; 10:923. [PMID: 34571801 PMCID: PMC8468029 DOI: 10.3390/biology10090923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
This article provides a narrative review of what is known about romantic love and sleep variations and provides possible explanations for the association. Romantic love and sleep are described using a comprehensive, unifying framework advocated by Tinbergen. We summarise the findings of studies investigating the relationship between romantic love and sleep. Sleep variations are associated with romantic love in adolescents and young adults. We then detail some proximate mechanisms that may contribute to sleep variations in people experiencing romantic love before considering potential evolutionary functions of sleep variations in people experiencing romantic love. The relationship between symptoms of psychopathology and sleep variations in people experiencing romantic love is described. With the current state of knowledge, it is not possible to determine whether sleep variations associated with romantic love are adaptations or by-products of romantic love. We conclude by proposing areas for future research.
Collapse
Affiliation(s)
- Adam Bode
- School of Archaeology and Anthropology, ANU College of Arts and Social Sciences, The Australian National University, Canberra ACT 0200, Australia
| | - Liisa Kuula
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, 00100 Helsinki, Finland
| |
Collapse
|
18
|
Cocaine-induced neural adaptations in the lateral hypothalamic melanin-concentrating hormone neurons and the role in regulating rapid eye movement sleep after withdrawal. Mol Psychiatry 2021; 26:3152-3168. [PMID: 33093653 PMCID: PMC8060355 DOI: 10.1038/s41380-020-00921-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022]
Abstract
Sleep abnormalities are often a prominent contributor to withdrawal symptoms following chronic drug use. Notably, rapid eye movement (REM) sleep regulates emotional memory, and persistent REM sleep impairment after cocaine withdrawal negatively impacts relapse-like behaviors in rats. However, it is not understood how cocaine experience may alter REM sleep regulatory machinery, and what may serve to improve REM sleep after withdrawal. Here, we focus on the melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH), which regulate REM sleep initiation and maintenance. Using adult male Sprague-Dawley rats trained to self-administer intravenous cocaine, we did transcriptome profiling of LH MCH neurons after long-term withdrawal using RNA-sequencing, and performed functional assessment using slice electrophysiology. We found that 3 weeks after withdrawal from cocaine, LH MCH neurons exhibit a wide range of gene expression changes tapping into cell membrane signaling, intracellular signaling, and transcriptional regulations. Functionally, they show reduced membrane excitability and decreased glutamatergic receptor activity, consistent with increased expression of voltage-gated potassium channel gene Kcna1 and decreased expression of metabotropic glutamate receptor gene Grm5. Finally, chemogenetic or optogenetic stimulations of LH MCH neural activity increase REM sleep after long-term withdrawal with important differences. Whereas chemogenetic stimulation promotes both wakefulness and REM sleep, optogenetic stimulation of these neurons in sleep selectively promotes REM sleep. In summary, cocaine exposure persistently alters gene expression profiles and electrophysiological properties of LH MCH neurons. Counteracting cocaine-induced hypoactivity of these neurons selectively in sleep enhances REM sleep quality and quantity after long-term withdrawal.
Collapse
|
19
|
Abstract
Understanding of the evolved biological function of sleep has advanced considerably in the past decade. However, no equivalent understanding of dreams has emerged. Contemporary neuroscientific theories often view dreams as epiphenomena, and many of the proposals for their biological function are contradicted by the phenomenology of dreams themselves. Now, the recent advent of deep neural networks (DNNs) has finally provided the novel conceptual framework within which to understand the evolved function of dreams. Notably, all DNNs face the issue of overfitting as they learn, which is when performance on one dataset increases but the network's performance fails to generalize (often measured by the divergence of performance on training versus testing datasets). This ubiquitous problem in DNNs is often solved by modelers via "noise injections" in the form of noisy or corrupted inputs. The goal of this paper is to argue that the brain faces a similar challenge of overfitting and that nightly dreams evolved to combat the brain's overfitting during its daily learning. That is, dreams are a biological mechanism for increasing generalizability via the creation of corrupted sensory inputs from stochastic activity across the hierarchy of neural structures. Sleep loss, specifically dream loss, leads to an overfitted brain that can still memorize and learn but fails to generalize appropriately. Herein this "overfitted brain hypothesis" is explicitly developed and then compared and contrasted with existing contemporary neuroscientific theories of dreams. Existing evidence for the hypothesis is surveyed within both neuroscience and deep learning, and a set of testable predictions is put forward that can be pursued both in vivo and in silico.
Collapse
Affiliation(s)
- Erik Hoel
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
20
|
Burger AL, Hartig J, Dierkes PW. Biological and environmental factors as sources of variation in nocturnal behavior of giraffe. Zoo Biol 2021; 40:171-181. [PMID: 33666286 DOI: 10.1002/zoo.21596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/09/2021] [Indexed: 01/01/2023]
Abstract
Upon a drastic decline of the giraffe population in the wild, conservation efforts and therefore the role of zoos have become more important than ever. With their unique opportunities, zoos provide excellent conditions to study animal behavior, expanding the knowledge about the giraffe's behavior repertoire and their ability to adapt. This study therefore examined the nocturnal behavior of 63 giraffe living in 13 different EAZA zoos across Germany and the Netherlands. Giraffe were observed and videos recorded via infrared sensitive cameras during the winter seasons 2015-2018. The observation period spanned nightly from 17:00 to 7:00. Thus, 198 nights, with a total of 2772 h were recorded and analyzed. Linear mixed models were then used to assess potential biological and environmental factors influencing behavior during the dark phase. Results show that individual variables such as age, subspecies and motherhood determined nocturnal activity and sleep behavior most. Among the variables studied, husbandry conditions and environmental factors complying with EAZA standards had no influence on the giraffe's nocturnal behavior. By combining nocturnal activity analyses and an assessment of potential influencing factors, our findings present a holistic approach to a better understanding of captive giraffe behavior and allow for management implications.
Collapse
Affiliation(s)
- Anna Lena Burger
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johannes Hartig
- Department of Educational Quality and Evaluation, DIPF, Leibniz Institute for Research and Information in Education, Frankfurt am Main, Germany
| | - Paul W Dierkes
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Tainton-Heap LAL, Kirszenblat LC, Notaras ET, Grabowska MJ, Jeans R, Feng K, Shaw PJ, van Swinderen B. A Paradoxical Kind of Sleep in Drosophila melanogaster. Curr Biol 2020; 31:578-590.e6. [PMID: 33238155 DOI: 10.1016/j.cub.2020.10.081] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 09/14/2020] [Accepted: 10/27/2020] [Indexed: 01/01/2023]
Abstract
The dynamic nature of sleep in many animals suggests distinct stages that serve different functions. Genetic sleep induction methods in animal models provide a powerful way to disambiguate these stages and functions, although behavioral methods alone are insufficient to accurately identify what kind of sleep is being engaged. In Drosophila, activation of the dorsal fan-shaped body (dFB) promotes sleep, but it remains unclear what kind of sleep this is, how the rest of the fly brain is behaving, or if any specific sleep functions are being achieved. Here, we developed a method to record calcium activity from thousands of neurons across a volume of the fly brain during spontaneous sleep and compared this to dFB-induced sleep. We found that spontaneous sleep typically transitions from an active "wake-like" stage to a less active stage. In contrast, optogenetic activation of the dFB promotes sustained wake-like levels of neural activity even though flies become unresponsive to mechanical stimuli. When we probed flies with salient visual stimuli, we found that the activity of visually responsive neurons in the central brain was blocked by transient dFB activation, confirming an acute disconnect from the external environment. Prolonged optogenetic dFB activation nevertheless achieved a key sleep function by correcting visual attention defects brought on by sleep deprivation. These results suggest that dFB activation promotes a distinct form of sleep in Drosophila, where brain activity appears similar to wakefulness, but responsiveness to external sensory stimuli is profoundly suppressed.
Collapse
Affiliation(s)
- Lucy A L Tainton-Heap
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Leonie C Kirszenblat
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Eleni T Notaras
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martyna J Grabowska
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rhiannon Jeans
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kai Feng
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul J Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
22
|
Zilio F, Gomez-Pilar J, Cao S, Zhang J, Zang D, Qi Z, Tan J, Hiromi T, Wu X, Fogel S, Huang Z, Hohmann MR, Fomina T, Synofzik M, Grosse-Wentrup M, Owen AM, Northoff G. Are intrinsic neural timescales related to sensory processing? Evidence from abnormal behavioral states. Neuroimage 2020; 226:117579. [PMID: 33221441 DOI: 10.1016/j.neuroimage.2020.117579] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/15/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The brain exhibits a complex temporal structure which translates into a hierarchy of distinct neural timescales. An open question is how these intrinsic timescales are related to sensory or motor information processing and whether these dynamics have common patterns in different behavioral states. We address these questions by investigating the brain's intrinsic timescales in healthy controls, motor (amyotrophic lateral sclerosis, locked-in syndrome), sensory (anesthesia, unresponsive wakefulness syndrome), and progressive reduction of sensory processing (from awake states over N1, N2, N3). We employed a combination of measures from EEG resting-state data: auto-correlation window (ACW), power spectral density (PSD), and power-law exponent (PLE). Prolonged neural timescales accompanied by a shift towards slower frequencies were observed in the conditions with sensory deficits, but not in conditions with motor deficits. Our results establish that the spontaneous activity's intrinsic neural timescale is related to the neural capacity that specifically supports sensory rather than motor information processing in the healthy brain.
Collapse
Affiliation(s)
- Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, Padua, Italy.
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain
| | - Shumei Cao
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Di Zang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaxing Tan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tanigawa Hiromi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Stuart Fogel
- The Brain and Mind Institute, Department of Physiology and Pharmacology and the Department of Psychology, University of Western Ontario, Canada
| | - Zirui Huang
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Matthias R Hohmann
- Department for Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Tatiana Fomina
- Department for Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Matthis Synofzik
- Department of Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Moritz Grosse-Wentrup
- Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, Austria
| | - Adrian M Owen
- The Brain and Mind Institute, Department of Physiology and Pharmacology and the Department of Psychology, University of Western Ontario, Canada
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| |
Collapse
|
23
|
Lendner JD, Helfrich RF, Mander BA, Romundstad L, Lin JJ, Walker MP, Larsson PG, Knight RT. An electrophysiological marker of arousal level in humans. eLife 2020; 9:e55092. [PMID: 32720644 PMCID: PMC7394547 DOI: 10.7554/elife.55092] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Deep non-rapid eye movement sleep (NREM) and general anesthesia with propofol are prominent states of reduced arousal linked to the occurrence of synchronized oscillations in the electroencephalogram (EEG). Although rapid eye movement (REM) sleep is also associated with diminished arousal levels, it is characterized by a desynchronized, 'wake-like' EEG. This observation implies that reduced arousal states are not necessarily only defined by synchronous oscillatory activity. Using intracranial and surface EEG recordings in four independent data sets, we demonstrate that the 1/f spectral slope of the electrophysiological power spectrum, which reflects the non-oscillatory, scale-free component of neural activity, delineates wakefulness from propofol anesthesia, NREM and REM sleep. Critically, the spectral slope discriminates wakefulness from REM sleep solely based on the neurophysiological brain state. Taken together, our findings describe a common electrophysiological marker that tracks states of reduced arousal, including different sleep stages as well as anesthesia in humans.
Collapse
Affiliation(s)
- Janna D Lendner
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center TuebingenTuebingenGermany
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain ResearchTuebingenGermany
- Department of Neurology and Epileptology, University Medical Center TuebingenTuebingenGermany
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, University of California, IrvineIrvineUnited States
| | - Luis Romundstad
- Department of Anesthesiology, University of Oslo Medical CenterOsloNorway
| | - Jack J Lin
- Department of Neurology, University of California, IrvineIrvineUnited States
| | - Matthew P Walker
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| | - Pal G Larsson
- Department of Neurosurgery, University of Oslo Medical CenterOsloNorway
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
24
|
Horne J. REM sleep vs exploratory wakefulness: Alternatives within adult ‘sleep debt’? Sleep Med Rev 2020; 50:101252. [DOI: 10.1016/j.smrv.2019.101252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
|
25
|
Mamelak M. Nightmares and the Cannabinoids. Curr Neuropharmacol 2020; 18:754-768. [PMID: 31934840 PMCID: PMC7536831 DOI: 10.2174/1570159x18666200114142321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/21/2019] [Accepted: 01/11/2020] [Indexed: 11/22/2022] Open
Abstract
The cannabinoids, Δ9 tetrahydrocannabinol and its analogue, nabilone, have been found to reliably attenuate the intensity and frequency of post-traumatic nightmares. This essay examines how a traumatic event is captured in the mind, after just a single exposure, and repeatedly replicated during the nights that follow. The adaptive neurophysiological, endocrine and inflammatory changes that are triggered by the trauma and that alter personality and behavior are surveyed. These adaptive changes, once established, can be difficult to reverse. But cannabinoids, uniquely, have been shown to interfere with all of these post-traumatic somatic adaptations. While cannabinoids can suppress nightmares and other symptoms of post-traumatic stress disorder, they are not a cure. There may be no cure. The cannabinoids may best be employed, alone, but more likely in conjunction with other agents, in the immediate aftermath of a trauma to mitigate or even abort the metabolic changes which are set in motion by the trauma and which may permanently alter the reactivity of the nervous system. Steps in this direction have already been taken.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, University of Toronto, Baycrest Hospital, Permanent Address: 19 Tumbleweed Road, Toronto, OntarioM2J 2N2, Canada
| |
Collapse
|
26
|
Simor P, van Der Wijk G, Gombos F, Kovács I. The paradox of rapid eye movement sleep in the light of oscillatory activity and cortical synchronization during phasic and tonic microstates. Neuroimage 2019; 202:116066. [DOI: 10.1016/j.neuroimage.2019.116066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/21/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022] Open
|
27
|
Herrero Babiloni A, De Koninck BP, Beetz G, De Beaumont L, Martel MO, Lavigne GJ. Sleep and pain: recent insights, mechanisms, and future directions in the investigation of this relationship. J Neural Transm (Vienna) 2019; 127:647-660. [DOI: 10.1007/s00702-019-02067-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022]
|
28
|
Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC. Genomic Imprinting and Physiological Processes in Mammals. Cell 2019; 176:952-965. [PMID: 30794780 DOI: 10.1016/j.cell.2019.01.043] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
Complex multicellular organisms, such as mammals, express two complete sets of chromosomes per nucleus, combining the genetic material of both parents. However, epigenetic studies have demonstrated violations to this rule that are necessary for mammalian physiology; the most notable parental allele expression phenomenon is genomic imprinting. With the identification of endogenous imprinted genes, genomic imprinting became well-established as an epigenetic mechanism in which the expression pattern of a parental allele influences phenotypic expression. The expanding study of genomic imprinting is revealing a significant impact on brain functions and associated diseases. Here, we review key milestones in the field of imprinting and discuss mechanisms and systems in which imprinted genes exert a significant role.
Collapse
Affiliation(s)
- Valter Tucci
- Department of Neuroscience and Brain Technologies - Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, CF24 44H, UK
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
29
|
Troynikov O, Watson CG, Nawaz N. Sleep environments and sleep physiology: A review. J Therm Biol 2018; 78:192-203. [PMID: 30509635 DOI: 10.1016/j.jtherbio.2018.09.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/16/2018] [Accepted: 09/16/2018] [Indexed: 01/13/2023]
Abstract
Sleep loss impairs task performance and post-physical activity recovery, cognitive performance and mood, heightens fatigue and decreases vigour; poor sleep quality impairs decision-making, the speed and accuracy of task performance, and post-exercise recovery. Sleep time and quality are affected by age, psychological and physiological conditions, culture and environmental factors. Skin temperature, rapid temperature change and sweating during sleep can significantly reduce sleep quality. Hence, the thermal properties of bedding and sleepwear, both in steady-state and transient ambient temperature conditions, are logically important factors. Research to date on sleeping thermal microclimates and their effect on sleep quality is scarce. This present review covers the fundamental elements of human sleep, highlighting physically active people, such as athletes, and the influence of sleepwear and bedding on sleep thermal microclimates, as well as the research methods that have been and could be used in this field. This review identifies opportunity for future research direction and approaches to understanding thermal environments that may support better human sleep.
Collapse
Affiliation(s)
- Olga Troynikov
- School of Fashion and Textiles, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056, Australia.
| | - Christopher G Watson
- School of Fashion and Textiles, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056, Australia.
| | - Nazia Nawaz
- School of Fashion and Textiles, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056, Australia.
| |
Collapse
|
30
|
Magidov E, Hayat H, Sharon O, Andelman F, Katzav S, Lavie P, Tauman R, Nir Y. Near-total absence of REM sleep co-occurring with normal cognition: an update of the 1984 paper. Sleep Med 2018; 52:134-137. [PMID: 30321820 DOI: 10.1016/j.sleep.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND REM sleep (REMS) is considered vital for supporting well-being and normal cognition. However, it remains unclear if and how decreases in REMS impair cognitive abilities. Rare case studies of patients with REMS abolishment due to pontine lesions remain sporadic, and formal evaluation of cognitive status is lacking. In 1984, Lavie and colleagues described the case of Y.C. - a man with a pontine lesion and near-total absence of REMS who led a normal life. Here, we set out to re-evaluate this individual's REMS status 30 years after the original report, and formally assess his cognitive abilities. METHODS Four whole-night polysomnographic sleep recordings were conducted to evaluate sleep architecture. Sleep scoring was performed according to the American Academy of Sleep Medicine (AASM) guidelines. Cranial Computed Tomography (CT) imaging was performed, as well as formal neuropsychological testing to evaluate cognitive functions. RESULTS Y.C. averaged 4.5% of sleep time in REMS, corresponding to the 0.055 percentile of normal values for his age. Furthermore, residual REMS episodes were short and only occurred towards the end of the night. CT imaging revealed damage and metallic fragments in pons, cerebellum, and thalamus. Neuropsychological evaluation demonstrated average to high-average cognitive skills, normal memory, and motor difficulties including speech and left hand dyspraxia. CONCLUSIONS To our knowledge, this is the only case where REMS loss resulting from pontine lesion was re-evaluated after many years. We find a near-total absence of REMS with no signs of significant compensation throughout adult life, along with normal cognitive status. The results provide a unique perspective on the ongoing debate regarding the functional role of REMS in supporting cognition.
Collapse
Affiliation(s)
- Efrat Magidov
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hanna Hayat
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Omer Sharon
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Fani Andelman
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shlomit Katzav
- Sleep Disorders Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Peretz Lavie
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Riva Tauman
- Sleep Disorders Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Functional Neurophysiology and Sleep Research Laboratory, Tel-Aviv Sourasky Medical Center, 64239 Tel-Aviv, Israel.
| |
Collapse
|
31
|
Sánchez-López A, Silva-Pérez M, Escudero M. Temporal dynamics of the transition period between nonrapid eye movement and rapid eye movement sleep in the rat. Sleep 2018; 41:5042786. [DOI: 10.1093/sleep/zsy121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 01/02/2023] Open
Affiliation(s)
- Alvaro Sánchez-López
- Departamento de Fisiología, Neurociencia y Comportamiento, Universidad de Sevilla, Avda. Reina Mercedes, – Seville, Spain
| | - Manuel Silva-Pérez
- Departamento de Fisiología, Neurociencia y Comportamiento, Universidad de Sevilla, Avda. Reina Mercedes, – Seville, Spain
| | - Miguel Escudero
- Departamento de Fisiología, Neurociencia y Comportamiento, Universidad de Sevilla, Avda. Reina Mercedes, – Seville, Spain
| |
Collapse
|
32
|
Krauss P, Schilling A, Bauer J, Tziridis K, Metzner C, Schulze H, Traxdorf M. Analysis of Multichannel EEG Patterns During Human Sleep: A Novel Approach. Front Hum Neurosci 2018; 12:121. [PMID: 29636673 PMCID: PMC5880946 DOI: 10.3389/fnhum.2018.00121] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 01/16/2023] Open
Abstract
Classic visual sleep stage scoring is based on electroencephalogram (EEG) frequency band analysis of 30 s epochs and is commonly performed by highly trained medical sleep specialists using additional information from submental EMG and eye movements electrooculogram (EOG). In this study, we provide the proof-of-principle in 40 subjects that sleep stages can be consistently differentiated solely on the basis of spatial 3-channel EEG patterns based on root-mean-square (RMS) amplitudes. The polysomnographic 3-channel EEG data are pre-processed by RMS averaging over intervals of 30 s leading to spatial cortical activity patterns represented by 3-dimensional vectors. These patterns are visualized using multidimensional scaling (MDS), allowing a comparison of the spatial cortical activity patterns with the conventional visual sleep scoring system according to the American Academy of Sleep Medicine (AASM). Spatial cortical activity patterns based on RMS amplitudes naturally divide into different clusters that correspond to visually scored sleep stages. Furthermore, these clusters are reproducible between different subjects. Especially the cluster associated with the REM sleep stage seems to be very different from the one associated with the wake state. This study provides a proof-of-principle that it is possible to separate sleep stages solely by analyzing spatially distributed EEG RMS amplitudes reflecting cortical activity and without classical EEG feature extractions like power spectrum analysis.
Collapse
Affiliation(s)
- Patrick Krauss
- Department of Otorhinolaryngology, Head and Neck Surgery, Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Achim Schilling
- Department of Otorhinolaryngology, Head and Neck Surgery, Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Judith Bauer
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Konstantin Tziridis
- Department of Otorhinolaryngology, Head and Neck Surgery, Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Claus Metzner
- Department of Physics, Biophysics Group, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Holger Schulze
- Department of Otorhinolaryngology, Head and Neck Surgery, Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Traxdorf
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
33
|
Huitron-Resendiz S, Nadav T, Krause S, Cates-Gatto C, Polis I, Roberts AJ. Effects of Withdrawal from Chronic Intermittent Ethanol Exposure on Sleep Characteristics of Female and Male Mice. Alcohol Clin Exp Res 2018; 42:540-550. [PMID: 29265376 DOI: 10.1111/acer.13584] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/11/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Sleep disruptions are an important consequence of alcohol use disorders. There is a dearth of preclinical studies examining sex differences in sleep patterns associated with ethanol (EtOH) dependence despite documented sex differences in alcohol-related behaviors and withdrawal symptoms. The purpose of this study was to investigate the effects of chronic intermittent EtOH on sleep characteristics in female and male mice. METHODS Female and male C57BL6/J mice had access to EtOH/water 2-bottle choice (2BC) 2 h/d for 3 weeks followed by exposure to EtOH vapor (vapor-2BC) or air for 5 cycles of 4 days. An additional group never experienced EtOH (naïve). Mice were implanted with electroencephalographic (EEG) electrodes, and vigilance states were recorded across 24 hours on the fourth day of withdrawal. The amounts of wakefulness, slow-wave sleep (SWS), and rapid eye movement sleep were calculated, and spectral analysis was performed by fast Fourier transformation. RESULTS Overall, vapor-2BC mice showed a decrease in the amount of SWS 4 days into withdrawal as well as a decrease in the power density of slow waves, indicating disruptions in both the amount and quality of sleep in EtOH-dependent mice. This was associated with a decrease in duration and an increase in number of SWS episodes in males and an increase in latency to sleep in females. CONCLUSIONS Our results revealed overall deficits in sleep regulation in EtOH-dependent mice of both sexes. Female mice appeared to be more affected with regard to the triggering of sleep, while male mice appeared more sensitive to disruptions in the maintenance of sleep.
Collapse
Affiliation(s)
| | - Tali Nadav
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Stephanie Krause
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Chelsea Cates-Gatto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Ilham Polis
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Amanda J Roberts
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
34
|
Lyamin OI, Mukhametov LM, Siegel JM. Sleep in the northern fur seal. Curr Opin Neurobiol 2017; 44:144-151. [PMID: 28505502 PMCID: PMC5609733 DOI: 10.1016/j.conb.2017.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/20/2017] [Indexed: 11/17/2022]
Abstract
The pattern of sleep in the fur seal, a semiaquatic pinniped, has several striking behavioral and physiological adaptations that allow this species to inhabit both the land and water environment. These features include unihemispheric slow wave sleep (USWS, also being unihemispheric waking), the ability to maintain movement for stabilization of the sleep posture and to briefly open one eye while having a sleep electroencephalogram (EEG) in one hemisphere. In vivo microdialysis studies suggest that acetylcholine release is required for cortical activation during USWS, and that monoamines are not required for USWS. The need to breathe, to maintain efficient thermoregulation, and to avoid predation have shaped the sleep patterns in semiaquatic fur seals as in fully aquatic cetaceans.
Collapse
Affiliation(s)
- Oleg I Lyamin
- Department of Psychiatry and Biobehavioral Sciences, and Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States; Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia; Utrish Dolphinarium Ltd., Moscow, Russia
| | - Lev M Mukhametov
- Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia; Utrish Dolphinarium Ltd., Moscow, Russia
| | - Jerome M Siegel
- Department of Psychiatry and Biobehavioral Sciences, and Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States; Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia.
| |
Collapse
|
35
|
Paradoxical Sleep Deprivation Causes Cardiac Dysfunction and the Impairment Is Attenuated by Resistance Training. PLoS One 2016; 11:e0167029. [PMID: 27880816 PMCID: PMC5120843 DOI: 10.1371/journal.pone.0167029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 11/08/2016] [Indexed: 01/09/2023] Open
Abstract
Background Paradoxical sleep deprivation activates the sympathetic nervous system and the hypothalamus-pituitary-adrenal axis, subsequently interfering with the cardiovascular system. The beneficial effects of resistance training are related to hemodynamic, metabolic and hormonal homeostasis. We hypothesized that resistance training can prevent the cardiac remodeling and dysfunction caused by paradoxical sleep deprivation. Methods Male Wistar rats were distributed into four groups: control (C), resistance training (RT), paradoxical sleep deprivation for 96 hours (PSD96) and both resistance training and sleep deprivation (RT/PSD96). Doppler echocardiograms, hemodynamics measurements, cardiac histomorphometry, hormonal profile and molecular analysis were evaluated. Results Compared to the C group, PSD96 group had a higher left ventricular systolic pressure, heart rate and left atrium index. In contrast, the left ventricle systolic area and the left ventricle cavity diameter were reduced in the PSD96 group. Hypertrophy and fibrosis were also observed. Along with these alterations, reduced levels of serum testosterone and insulin-like growth factor-1 (IGF-1), as well as increased corticosterone and angiotensin II, were observed in the PSD96 group. Prophylactic resistance training attenuated most of these changes, except angiotensin II, fibrosis, heart rate and concentric remodeling of left ventricle, confirmed by the increased of NFATc3 and GATA-4, proteins involved in the pathologic cardiac hypertrophy pathway. Conclusions Resistance training effectively attenuates cardiac dysfunction and hormonal imbalance induced by paradoxical sleep deprivation.
Collapse
|
36
|
Prophylactic Role of Oral Melatonin Administration on Neurogenesis in Adult Balb/C Mice during REM Sleep Deprivation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2136902. [PMID: 27579149 PMCID: PMC4992538 DOI: 10.1155/2016/2136902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/10/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022]
Abstract
Purpose. The aim of this study was to assess the effect of melatonin in the proliferation of neural progenitors, melatonin concentration, and antiapoptotic proteins in the hippocampus of adult mice exposed to 96 h REM sleep deprivation (REMSD) prophylactic administration of melatonin for 14 days. Material and Methods. Five groups of Balb/C mice were used: (1) control, (2) REMSD, (3) melatonin (10 mg/kg) plus REMSD, (4) melatonin and intraperitoneal luzindole (once a day at 5 mg/kg) plus REMSD, and (5) luzindole plus REMSD. To measure melatonin content in hippocampal tissue we used HPLC. Bcl-2 and Bcl-xL proteins were measured by Western Blot and neurogenesis was determined by injecting 5-bromo-2-deoxyuridine (BrdU) and BrdU/nestin expressing cells in the subgranular zone of the dentate gyrus were quantified by epifluorescence. Results. The melatonin-treated REMSD group showed an increased neural precursor in 44% with respect to the REMSD group and in 28% when contrasted with the control group (P < 0.021). The melatonin-treated REMSD group also showed the highest expression of Bcl-2 and Bcl-xL as compared to the rest of the groups. Conclusion. The exogenous administration of melatonin restores the tissue levels of sleep-deprived group and appears to be an efficient neuroprotective agent against the deleterious effects of REMSD.
Collapse
|
37
|
Arrigoni E, Chen MC, Fuller PM. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 2016; 594:5391-414. [PMID: 27060683 DOI: 10.1113/jp271324] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/02/2016] [Indexed: 01/14/2023] Open
Abstract
Rapid eye movement (REM) sleep is a recurring part of the sleep-wake cycle characterized by fast, desynchronized rhythms in the electroencephalogram (EEG), hippocampal theta activity, rapid eye movements, autonomic activation and loss of postural muscle tone (atonia). The brain circuitry governing REM sleep is located in the pontine and medullary brainstem and includes ascending and descending projections that regulate the EEG and motor components of REM sleep. The descending signal for postural muscle atonia during REM sleep is thought to originate from glutamatergic neurons of the sublaterodorsal nucleus (SLD), which in turn activate glycinergic pre-motor neurons in the spinal cord and/or ventromedial medulla to inhibit motor neurons. Despite work over the past two decades on many neurotransmitter systems that regulate the SLD, gaps remain in our knowledge of the synaptic basis by which SLD REM neurons are regulated and in turn produce REM sleep atonia. Elucidating the anatomical, cellular and synaptic basis of REM sleep atonia control is a critical step for treating many sleep-related disorders including obstructive sleep apnoea (apnea), REM sleep behaviour disorder (RBD) and narcolepsy with cataplexy.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Michael C Chen
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
38
|
Affiliation(s)
- Valter Tucci
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- * E-mail:
| |
Collapse
|
39
|
Mader EC, Mader ACL. Sleep as spatiotemporal integration of biological processes that evolved to periodically reinforce neurodynamic and metabolic homeostasis: The 2m3d paradigm of sleep. J Neurol Sci 2016; 367:63-80. [PMID: 27423566 DOI: 10.1016/j.jns.2016.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 11/19/2022]
Abstract
Sleep continues to perplex scientists and researchers. Despite decades of sleep research, we still lack a clear understanding of the biological functions and evolution of sleep. In this review, we will examine sleep from a functional and phylogenetic perspective and describe some important conceptual gaps in understanding sleep. Classical theories of the biology and evolution of sleep emphasize sensory activation, energy balance, and metabolic homeostasis. Advances in electrophysiology, functional neuroimaging, and neuroplasticity allow us to view sleep within the framework of neural dynamics. With this paradigm shift, we have come to realize the importance of neurodynamic homeostasis in shaping the biology of sleep. Evidently, animals sleep to achieve neurodynamic and metabolic homeostasis. We are not aware of any framework for understanding sleep where neurodynamic, metabolic, homeostatic, chronophasic, and afferent variables are all taken into account. This motivated us to propose the two-mode three-drive (2m3d) paradigm of sleep. In the 2m3d paradigm, local neurodynamic/metabolic (N/M) processes switch between two modes-m0 and m1-in response to three drives-afferent, chronophasic, and homeostatic. The spatiotemporal integration of local m0/m1 operations gives rise to the global states of sleep and wakefulness. As a framework of evolution, the 2m3d paradigm allows us to view sleep as a robust adaptive strategy that evolved so animals can periodically reinforce neurodynamic and metabolic homeostasis while remaining sensitive to their internal and external environment.
Collapse
Affiliation(s)
- Edward Claro Mader
- Louisiana State University Health Sciences Center, Department of Neurology, New Orleans, LA 70112, USA.
| | | |
Collapse
|
40
|
Cox J, Pinto L, Dan Y. Calcium imaging of sleep-wake related neuronal activity in the dorsal pons. Nat Commun 2016; 7:10763. [PMID: 26911837 PMCID: PMC4773416 DOI: 10.1038/ncomms10763] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 01/19/2016] [Indexed: 11/13/2022] Open
Abstract
The dorsal pons has long been implicated in the generation of rapid eye movement (REM) sleep, but the underlying circuit mechanisms remain poorly understood. Using cell-type-specific microendoscopic Ca2+ imaging in and near the laterodorsal tegmental nucleus, we found that many glutamatergic neurons are maximally active during REM sleep (REM-max), while the majority of GABAergic neurons are maximally active during wakefulness (wake-max). Furthermore, the activity of glutamatergic neurons exhibits a medio-lateral spatial gradient, with medially located neurons more selectively active during REM sleep. Dreaming occurs in REM sleep, yet the neural mechanisms involved in generating it are not understood. Here Cox and colleagues show that glutamatergic neurons in the dorsal pons are activated most during transition to REM sleep while GABAergic neurons are more active during waking state.
Collapse
Affiliation(s)
- Julia Cox
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, 230 Li Ka Shing Center, Berkeley, California 94720, USA
| | - Lucas Pinto
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, 230 Li Ka Shing Center, Berkeley, California 94720, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, 230 Li Ka Shing Center, Berkeley, California 94720, USA
| |
Collapse
|
41
|
Pavese N. Imaging the aetiology of sleep disorders in dementia and Parkinson's disease. Curr Neurol Neurosci Rep 2015; 14:501. [PMID: 25341374 DOI: 10.1007/s11910-014-0501-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sleep disorders are commonly observed in patients with neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease and often represent an early manifestation of the underlying degenerative process. The pathophysiology of sleep dysfunction in these conditions is complex and incompletely understood. However, in recent years, functional imaging in vivo with SPECT and PET has significantly improved our understanding of the possible molecular mechanisms. These include dysfunction of both dopaminergic and non-dopaminergic pathways involved in sleep/wakefulness control. This paper summarizes the main findings of the imaging studies performed to elucidate the aetiology of sleep disorders in Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Nicola Pavese
- Division of Brain Sciences-Neurology Imaging Unit (NIU), Imperial College London, 1st Floor, B Block Hammersmith Campus DuCane Road, London, W12 0NN, UK,
| |
Collapse
|
42
|
Al-Abri MA. Sleep Deprivation and Depression: A bi-directional association. Sultan Qaboos Univ Med J 2015; 15:e4-e6. [PMID: 25685384 PMCID: PMC4318605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/15/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023] Open
Affiliation(s)
- Mohammed A Al-Abri
- Department of Clinical Physiology, Sultan Qaboos University Hospital, Muscat, Oman, E-mail:
| |
Collapse
|
43
|
Zhou L, Bryant CD, Loudon A, Palmer AA, Vitaterna MH, Turek FW. The circadian clock gene Csnk1e regulates rapid eye movement sleep amount, and nonrapid eye movement sleep architecture in mice. Sleep 2014; 37:785-93, 793A-793C. [PMID: 24744456 DOI: 10.5665/sleep.3590] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Efforts to identify the genetic basis of mammalian sleep have included quantitative trait locus (QTL) mapping and gene targeting of known core circadian clock genes. We combined three different genetic approaches to identify and test a positional candidate sleep gene - the circadian gene casein kinase 1 epsilon (Csnk1e), which is located in a QTL we identified for rapid eye movement (REM) sleep on chromosome 15. MEASUREMENTS AND RESULTS Using electroencephalographic (EEG) and electromyographic (EMG) recordings, baseline sleep was examined in a 12-h light:12-h dark (LD 12:12) cycle in mice of seven genotypes, including Csnk1e(tau/tau) and Csnk1e(-/-) mutant mice, Csnk1e (B6.D2) and Csnk1e (D2.B6) congenic mice, and their respective wild-type littermate control mice. Additionally, Csnk1e(tau/tau) and wild-type mice were examined in constant darkness (DD). Csnk1e(tau/tau) mutant mice and both Csnk1e (B6.D2) and Csnk1e (D2.B6) congenic mice showed significantly higher proportion of sleep time spent in REM sleep during the dark period than wild-type controls - the original phenotype for which the QTL on chromosome 15 was identified. This phenotype persisted in Csnk1e(tau/tau) mice while under free-running DD conditions. Other sleep phenotypes observed in Csnk1e(tau/tau) mice and congenics included a decreased number of bouts of nonrapid eye movement (NREM) sleep and an increased average NREM sleep bout duration. CONCLUSIONS These results demonstrate a role for Csnk1e in regulating not only the timing of sleep, but also the REM sleep amount and NREM sleep architecture, and support Csnk1e as a causal gene in the sleep QTL on chromosome 15.
Collapse
Affiliation(s)
- Lili Zhou
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL ; Department of Neurobiology, Northwestern University, Evanston, IL
| | - Camron D Bryant
- Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA
| | - Andrew Loudon
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Abraham A Palmer
- Department of Human Genetics, University of Chicago, Chicago, IL ; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL ; Department of Neurobiology, Northwestern University, Evanston, IL
| | - Fred W Turek
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL ; Department of Neurobiology, Northwestern University, Evanston, IL
| |
Collapse
|
44
|
Adams GC, Stoops MA, Skomro RP. Sleep tight: exploring the relationship between sleep and attachment style across the life span. Sleep Med Rev 2014; 18:495-507. [PMID: 24721278 DOI: 10.1016/j.smrv.2014.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 02/24/2014] [Accepted: 03/04/2014] [Indexed: 11/17/2022]
Abstract
Based on early life experiences in which developmental, genetic, and environmental components interact, humans learn to trust themselves and others and connect emotionally in consistent ways that are broadly defined as "attachment styles." These relatively stable patterns of interpersonal interaction are associated with either vulnerability to various health risks or resilience. Similarly, the mechanisms involved in sleep regulation undergo developmental changes that overlap temporally with attachment formation and remain sensitive to a series of biological, environmental and psychological influences. Interestingly, while sleep has been conceptualized as a fundamental attachment behavior given its dyadic context, few studies have explored its relationship with attachment style in various ages. We present the first systematic review of the published literature examining the relationship between attachment style and sleep in humans across the life span. While levels of evidence and methods of assessment vary significantly, the results suggest a possible life-long relationship between individual attachment style and sleep. These findings are particularly useful in understanding relatively ingrained psychological mechanisms that can affect and be affected by sleep. Clinical and research implications are discussed.
Collapse
Affiliation(s)
- G Camelia Adams
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Canada.
| | - Melissa A Stoops
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Canada
| | - Robert P Skomro
- Division of Respirology, Critical Care and Sleep Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
45
|
Vyazovskiy VV, Delogu A. NREM and REM Sleep: Complementary Roles in Recovery after Wakefulness. Neuroscientist 2014; 20:203-19. [PMID: 24598308 DOI: 10.1177/1073858413518152] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The overall function of sleep is hypothesized to provide "recovery" after preceding waking activities, thereby ensuring optimal functioning during subsequent wakefulness. However, the functional significance of the temporal dynamics of sleep, manifested in the slow homeostatic process and the alternation between non-rapid eye movement (NREM) and REM sleep remains unclear. We propose that NREM and REM sleep have distinct and complementary contributions to the overall function of sleep. Specifically, we suggest that cortical slow oscillations, occurring within specific functionally interconnected neuronal networks during NREM sleep, enable information processing, synaptic plasticity, and prophylactic cellular maintenance ("recovery process"). In turn, periodic excursions into an activated brain state-REM sleep-appear to be ideally placed to perform "selection" of brain networks, which have benefited from the process of "recovery," based on their offline performance. Such two-stage modus operandi of the sleep process would ensure that its functions are fulfilled according to the current need and in the shortest time possible. Our hypothesis accounts for the overall architecture of normal sleep and opens up new perspectives for understanding pathological conditions associated with abnormal sleep patterns.
Collapse
Affiliation(s)
| | - Alessio Delogu
- Department of Neuroscience, Institute of Psychiatry, King's College London, London, UK
| |
Collapse
|
46
|
|
47
|
The spaces left over between REM sleep, dreaming, hippocampal formation, and episodic autobiographical memory. Behav Brain Sci 2013; 36:622-3; discussion 634-59. [PMID: 24304764 DOI: 10.1017/s0140525x13001374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractIt is argued that Llewellyn's hypothesis about the lack of rapid eye movement (REM)-sleep dreaming leading to loss of personal identity and deficits in episodic memory, affectivity, and prospection is insufficiently grounded because it does not integrate data from neurodevelopmental studies and makes reference to an outdated definition of episodic memory.
Collapse
|
48
|
Krystal AD, Schopler B, Kobbe S, Williams C, Rakatondrainibe H, Yoder AD, Klopfer P. The relationship of sleep with temperature and metabolic rate in a hibernating primate. PLoS One 2013; 8:e69914. [PMID: 24023713 PMCID: PMC3762832 DOI: 10.1371/journal.pone.0069914] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/13/2013] [Indexed: 11/18/2022] Open
Abstract
STUDY OBJECTIVES It has long been suspected that sleep is important for regulating body temperature and metabolic-rate. Hibernation, a state of acute hypothermia and reduced metabolic-rate, offers a promising system for investigating those relationships. Prior studies in hibernating ground squirrels report that, although sleep occurs during hibernation, it manifests only as non-REM sleep, and only at relatively high temperatures. In our study, we report data on sleep during hibernation in a lemuriform primate, Cheirogaleus medius. As the only primate known to experience prolonged periods of hibernation and as an inhabitant of more temperate climates than ground squirrels, this animal serves as an alternative model for exploring sleep temperature/metabolism relationships that may be uniquely relevant to understanding human physiology. MEASUREMENTS AND RESULTS We find that during hibernation, non-REM sleep is absent in Cheirogaleus. Rather, periods of REM sleep occur during periods of relatively high ambient temperature, a pattern opposite of that observed in ground squirrels. Like ground squirrels, however, EEG is marked by ultra-low voltage activity at relatively low metabolic-rates. CONCLUSIONS These findings confirm a sleep-temperature/metabolism link, though they also suggest that the relationship of sleep stage with temperature/metabolism is flexible and may differ across species or mammalian orders. The absence of non-REM sleep suggests that during hibernation in Cheirogaleus, like in the ground squirrel, the otherwise universal non-REM sleep homeostatic response is greatly curtailed or absent. Lastly, ultra-low voltage EEG appears to be a cross-species marker for extremely low metabolic-rate, and, as such, may be an attractive target for research on hibernation induction.
Collapse
Affiliation(s)
- Andrew D. Krystal
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Bobby Schopler
- Lemur Center, Duke University, Durham, North Carolina, United States of America
| | - Susanne Kobbe
- Department of Animal Ecology and Conservation, Hamburg University, Hamburg, Germany
| | - Cathy Williams
- Lemur Center, Duke University, Durham, North Carolina, United States of America
| | - Hajanirina Rakatondrainibe
- Lemurs Biomedical Monitoring Environmental Department, Biodiversity Section, Ambatovy, Mineral Society Anonym, Antananarivo, Madagascar
| | - Anne D. Yoder
- Lemur Center, Duke University, Durham, North Carolina, United States of America
- Departments of Biology and Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
| | - Peter Klopfer
- Lemur Center, Duke University, Durham, North Carolina, United States of America
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
49
|
Chase MH. Motor control during sleep and wakefulness: Clarifying controversies and resolving paradoxes. Sleep Med Rev 2013; 17:299-312. [DOI: 10.1016/j.smrv.2012.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 08/29/2012] [Accepted: 09/12/2012] [Indexed: 11/16/2022]
|
50
|
Abstract
Age-related sleep and endocrinometabolic alterations frequently interact with each other. For many hormones, sleep curtailment in young healthy subjects results in alterations strikingly similar to those observed in healthy old subjects not submitted to sleep restriction. Thus, recurrent sleep restriction, which is currently experienced by a substantial and rapidly growing proportion of children and young adults, might contribute to accelerate the senescence of endocrine and metabolic function. The mechanisms of sleep-hormonal interactions, and therefore the endocrinometabolic consequences of age-related sleep alterations, which markedly differ from one hormone to another, are reviewed in this article.
Collapse
Affiliation(s)
- Georges Copinschi
- Laboratory of Physiology and Physiopathology, Université Libre de Bruxelles, Brussels, Belgium.
| | | |
Collapse
|