1
|
Peng S, Zhang Z, Guo J, Ma T, Liu D. Rapid detection of thiram on apple surfaces using a flexible and sticky SERS substrate coupled with chemometric methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125435. [PMID: 39571209 DOI: 10.1016/j.saa.2024.125435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/14/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
In this paper, we developed a simple, rapid and sensitive method for detection of thiram on apple surfaces by surface enhance Raman spectroscopy (SERS) combined with chemometric methods. Ag NCs (Ag nanocubes) were firstly prepared by a sulfide-mediated polyol method. Then the flexible and adhesive Ag NCs@PDMS substrates were obtained by combining Ag NCs self-assembled films with PDMS films. Thiram residues on apple surfaces were transferred to the substrate using adhesion properties of Ag NCs@PDMS. And the SERS spectra were obtained by Raman microscopy and analyzed with chemometric methods. The results were analyzed by principal component analysis (PCA), for the limit of detection (LOD) of thriam on apple surfaces was 0.01 ppm. Principal component regression (PCR) and partial least squares regression (PLSR) were explored to develop quantitative models. Both models represented higher correlation coefficients (close to 1), but PLSR models exhibited better predictive performance, with the correlation coefficient was 0.99282 with a low root mean squared error of calibration (RMSEC = 0.438) and root mean squared error of validation (RMSECV = 0.597). The developed SERS method based on Ag NCs@PDMS substrate provide a simpler and more sensitive way to monitor thiram on apple surfaces.
Collapse
Affiliation(s)
- Sasa Peng
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China
| | - Zhilong Zhang
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China
| | - Jialin Guo
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China
| | - Tianchen Ma
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China
| | - Dongli Liu
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China.
| |
Collapse
|
2
|
Liu X, Yu Y, Xie T, Cao Z, Li Z, Li Y, Gu Y, Han C, Yang G, Qu L. Fabrication of multifunctional g-C 3N 4-modified Au/Ag NRs arrays for ultrasensitive and recyclable SERS detection of bisphenol A residues. Mikrochim Acta 2023; 191:51. [PMID: 38147085 DOI: 10.1007/s00604-023-06136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023]
Abstract
Monolayer g-C3N4-modified Au/Ag nanorods (g-C3N4/Au/Ag NRs) array is fabricated as a dual-function platform with high surface-enhanced Raman scattering (SERS) response and excellent photocatalytic degradation ability for bisphenol A (BPA) residues. FDTD simulation results of Au/Ag NRs proves that the electromagnetic field intensity is significantly enhanced at the gap of Ag NRs and Au NPs and the protrusion of Au NPs, which endows the arrays with excellent SERS activity. The arrays exhibit high sensitivity for rhodamine 6G (R6G) (LOD = 1.1 × 10-11 mol/L) and high SERS enhancement (EF = 9.2 × 107). In addition, the g-C3N4/Au/Ag NRs could degrade ˃90% of BPA adsorbed on the substrate surface within 140 min under visible light irradiation, and maintains its SERS activity after repeated use for 4 times. The dual-function platform with high SERS response and excellent recycling capability is proved to be reliable and is very promising for monitoring of BPA residues in food.
Collapse
Affiliation(s)
- Xinyu Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yang Yu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Tianhua Xie
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zijin Cao
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Zhiyan Li
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yuejing Li
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yingqiu Gu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Caiqin Han
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China.
| | - Guohai Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lulu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
3
|
Zhao L, Wei Y, Fu H, Yang R, Zhao Q, Zhang H, Cai W. Solid chip-based detection of trace morphine in solutions via portable surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:122977. [PMID: 37329830 DOI: 10.1016/j.saa.2023.122977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023]
Abstract
The accurate, sensitive and portable detection of morphine is important to handle judicial cases, but remains to be a great challenge. In this work, a flexible route is presented for the accurate identification and efficient detection of trace morphine in solutions based on surface-enhanced Raman spectroscopy (SERS) and a solid substrate/chip. A gold-coated jagged silicon nanoarray (Au-JSiNA) is designed and prepared via Si-based polystyrene colloidal template-reactive ion etching and sputtering deposition of Au. Such Au-JSiNA has three-dimensional nanostructure with good structural uniformity, high SERS activity and hydrophobic surface. Adopting this Au-JSiNA as SERS chip, trace morphine in solutions could be detected and identified in both dropping and soaking ways, and the limit of detection is below 10-4 mg/mL. Importantly, such chip is especially suitable for the detection of trace morphine in aqueous solutions and even domestic sewage. The good SERS performance is attributed to the high-density nanotips and nanogaps on this chip as well as its hydrophobic surface. Additionally, the appropriate surface modification of this Au-JSiNA chip with 3-mercapto-1-propanol or 3-mercaptopropionic acid/1-(3-dimethylaminopropyl)-3-ethylcarbodiimide can further increase its SERS performances to morphine. This work provides a facile route and practical solid chip for SERS detection of trace morphine in solutions, which is significant to develop the portable and reliable instruments for on-site analysis of drugs in solutions.
Collapse
Affiliation(s)
- Lingyi Zhao
- School of Criminal Investigation, People's Public Security University of China, Beijing 100038, PR China; Beijing Municipal Key Laboratory of Forensic Science, Beijing 100038, PR China
| | - Yi Wei
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Hao Fu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Ruiqin Yang
- School of Criminal Investigation, People's Public Security University of China, Beijing 100038, PR China; Beijing Municipal Key Laboratory of Forensic Science, Beijing 100038, PR China.
| | - Qian Zhao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Hongwen Zhang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Weiping Cai
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| |
Collapse
|
4
|
Chen F, Zhao Y, Zhang S, Wei S, Ming A, Mao C. Hydrophobic Wafer-Scale High-Reproducibility SERS Sensor Based on Silicon Nanorods Arrays Decorated with Au Nanoparticles for Pesticide Residue Detection. BIOSENSORS 2022; 12:273. [PMID: 35624574 PMCID: PMC9138717 DOI: 10.3390/bios12050273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 05/09/2023]
Abstract
High sensitivity and reproducibility are highly desirable to a SERS sensor in diverse detection applications. Moreover, it is a great challenge to determine how to promote the target molecules to be more concentrated on the hotspots of the SERS substrate by engineering a surface with switching interfacial wettability. Along these lines, wafer-scale uniformly hydrophobic silicon nanorods arrays (SiNRs) decorated with Au nanoparticles were designed as the SERS substrate. Typically, the SERS substrate was fabricated by enforcing the polystyrene (PS) sphere self-assembly, as well as the plasma etching and the magnetron sputtering techniques. Consequently, the SERS substrate was treated by soaking within a n-dodecyl mercaptan (NDM) solution at different times in order to obtain adjustable wettabilities. By leveraging the electromagnetic enhancement resulted from the Au nanostructures and enrichment effect induced by the hydrophobicity, the SERS substrate is endowed with efficient SERS capabilities. During the detection of malachite green (MG), an ultralow relative standard deviation (RSD) 4.04-6.14% is achieved and the characteristic signal of 1172 cm-1 can be detected as low as 1 ng/mL. The proposed SiNRs' structure presents outstanding SERS activity with sensitivity and reproducibility rendering thus an ideal candidate for potential application in analytical detection fields.
Collapse
Affiliation(s)
- Fanhong Chen
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Corporation Limited, Beijing 100088, China; (F.C.); (S.Z.)
- Department of Advanced Electronic Materials, GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China;
| | - Yupeng Zhao
- Department of Advanced Electronic Materials, GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China;
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China;
| | - Shaoxun Zhang
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Corporation Limited, Beijing 100088, China; (F.C.); (S.Z.)
- Department of Advanced Electronic Materials, GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China;
| | - Shuhua Wei
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China;
| | - Anjie Ming
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Corporation Limited, Beijing 100088, China; (F.C.); (S.Z.)
- Department of Advanced Electronic Materials, GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China;
| | - Changhui Mao
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Corporation Limited, Beijing 100088, China; (F.C.); (S.Z.)
- Department of Advanced Electronic Materials, GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China;
| |
Collapse
|
5
|
Xie T, Cao Z, Li Y, Li Z, Zhang FL, Gu Y, Han C, Yang G, Qu L. Highly sensitive SERS substrates with multi-hot spots for on-site detection of pesticide residues. Food Chem 2022; 381:132208. [PMID: 35123223 DOI: 10.1016/j.foodchem.2022.132208] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
Pesticide residues will be a huge threat to food security and ecological environment; therefore, there is an urgent need to achieve rapid and on-site detection of pesticide residues. Herein, a plasmonic substrate with multiple "hot spots" was fabricated by transferring three-dimensional (3D) Au nanoparticles (NPs) onto the polydimethylsiloxane (PDMS) membrane for highly sensitive surface-enhanced Raman scattering (SERS) detection of pesticide residues. In combination with 3D-FDTD simulations, high SERS enhancement (EF = 1.2 × 108) and high detection sensitivity (LOD = 6.3 × 10-10 M) were achieved, mainly due to the enhanced electromagnetic fields around the "hot spots". Additionally, the PDMS-based SERS substrate held good transparency and flexibility, enabling conformal contact with non-planar surfaces and allowing the laser to penetrate the back of the analytes. Combined with a portable Raman spectrometer, the substrates holds great potential for rapid, high-sensitive, and on-site detection of contaminants in food, especially for the analyte on the nonplanar surfaces.
Collapse
Affiliation(s)
- Tianhua Xie
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Zijin Cao
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yuejing Li
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhiyan Li
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Fan-Li Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Yingqiu Gu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Caiqin Han
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Guohai Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Lulu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
6
|
Zhang L, Meng C, Zhang G, Bai D, Gao F, Xu L, Zhang W, Mei T, Zhao J. Nanofocusing of a metallized double periodic arranged nanocone array for surface-enhanced Raman spectroscopy. OPTICS EXPRESS 2021; 29:28086-28095. [PMID: 34614947 DOI: 10.1364/oe.435046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
A plasmonic double periodic arranged nanocone array (DPANA) integrated by nanotips and nanogaps exhibit strong capability of light compression, and thus lead to extremely enhanced electric near-field intensity. The DPANA is fabricated by the self-assembled mask integrated with the inductively couple plasma (ICP) etching technology. Finite-difference time-domain (FDTD) simulations suggest that the metallized DPANA can generate a strong hotspot at the sharp tip apex and the nanogap between adjacent sharp tips. The electric-field enhancement characteristic is firstly verified with the help of the second-order surface nonlinear optical response of the metallized DPANA. The surface-enhanced Raman spectroscopy (SERS) examination of the metallized DPANA exhibits high sensitivity due to clearly presenting the Raman spectra of Rhodamine-6G (R6G) with concentrations down to 10 pM and has excellent uniformity, time stability, and recyclability, simultaneously. Furthermore, the principle demonstration of SERS practical application is also performed for thiram. This as-prepared SERS substrate has great potential application for trace amount detection.
Collapse
|
7
|
Fu L, Gao X, Dong S, Hsu HY, Zou G. Surface-Defect-Induced and Synergetic-Effect-Enhanced NIR-II Electrochemiluminescence of Au–Ag Bimetallic Nanoclusters and Its Spectral Sensing. Anal Chem 2021; 93:4909-4915. [DOI: 10.1021/acs.analchem.0c05187] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Li Fu
- School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road #27, Jinan 250100, China
| | - Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road #27, Jinan 250100, China
| | - Shuangtian Dong
- School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road #27, Jinan 250100, China
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue #83, Kowloon Tong, Kowloon Hong Kong 999077, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road #27, Jinan 250100, China
| |
Collapse
|