1
|
Sun S, Wang A, Kou R, Xue H, Zhao X, Yang B, Shi M, Wang Y, Yan Q, Qu M, Wang Y, Gao Z. Duodenal-Jejunal Bypass Restores Sweet Taste Receptor-Mediated Glucose Sensing and Absorption in Diabetic Rats. J Diabetes Res 2024; 2024:5544296. [PMID: 39263491 PMCID: PMC11390237 DOI: 10.1155/2024/5544296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/04/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024] Open
Abstract
Aim: The aim of the study is to identify the regulatory role of intestinal sweet taste receptors (STRs) and glucose transporters (SGLT1, GLUT2) and gut peptide secretion in duodenal-jejunal bypass (DJB)-ameliorated glycemic control in Type 2 diabetes. Materials and Methods: DJB and sham surgeries were performed in streptozotocin-induced diabetic male rats. The blood GLP-1 and GLP-2 levels were evaluated under feeding and fasting conditions. The expression of STRs (T1R2, T1R3), sweet taste signaling effector (Gα-gustducin), SGLT1, and GLUT2 was detected in the intestinal alimentary limb (A limb), biliopancreatic limb (BP limb), and common limb (C limb). The effects of STR inhibition on glucose control were measured with lactisole. Results: Glucose tolerance was improved in DJB-operated rats compared with the sham group, similar to that of normal control rats, without significant differences in food intake and body weight. The plasma GLP-1 levels of DJB rats were increased under diet-fed condition, and GLP-2 levels were increased after fasting. The villus height and crypt depth were significantly increased in the A limb of DJB-operated rats. In addition, GLP-1 expression was restored in enterocytes. The expression of T1R2, Gα-gustducin, and SGLT1 was elevated in the A limb after DJB, while GLUT2 was downregulated in the A, BP, and C limbs. The localization of GLUT2 was normalized in the three intestinal limbs after DJB. However, the beneficial effects of DJB on glucose control were abolished in the presence of lactisole in vivo. Conclusion: DJB ameliorates glycemic control probably by restoring STR-mediated glucose sensing and absorption with the responses of GLP-1 and GLP-2 to carbohydrate.
Collapse
Affiliation(s)
- Sipeng Sun
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| | - Anping Wang
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| | - Rongguan Kou
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| | - Hantao Xue
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| | - Xiangyu Zhao
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| | - Ben Yang
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| | - Mengqi Shi
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| | - Yubing Wang
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| | - Qingtao Yan
- Department of Pediatric SurgeryWeifang People's HospitalThe First Affiliated Hospital of Shandong Second Medical University, Weifang 261021, China
| | - Meihua Qu
- Translational Medical CenterWeifang Second People's Hospital, Weifang 261021, China
| | - Yi Wang
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| | - Zhiqin Gao
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| |
Collapse
|
2
|
Haran A, Bergel M, Kleiman D, Hefetz L, Israeli H, Weksler-Zangen S, Agranovich B, Abramovich I, Ben-Haroush Schyr R, Gottlieb E, Ben-Zvi D. Differential effects of bariatric surgery and caloric restriction on hepatic one-carbon and fatty acid metabolism. iScience 2023; 26:107046. [PMID: 37389181 PMCID: PMC10300224 DOI: 10.1016/j.isci.2023.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/24/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Weight loss interventions, including dietary changes, pharmacotherapy, or bariatric surgery, prevent many of the adverse consequences of obesity, and may also confer intervention-specific benefits beyond those seen with decreased weight alone. We compared the molecular effects of different interventions on liver metabolism to understand the mechanisms underlying these benefits. Male rats on a high-fat, high-sucrose diet underwent sleeve gastrectomy (SG) or intermittent fasting with caloric restriction (IF-CR), achieving equivalent weight loss. The interventions were compared to ad-libitum (AL)-fed controls. Analysis of liver and blood metabolome and transcriptome revealed distinct and sometimes contrasting metabolic effects between the two interventions. SG primarily influenced one-carbon metabolic pathways, whereas IF-CR increased de novo lipogenesis and glycogen storage. These findings suggest that the unique metabolic pathways affected by SG and IF-CR contribute to their distinct clinical benefits, with bariatric surgery potentially influencing long-lasting changes through its effect on one-carbon metabolism.
Collapse
Affiliation(s)
- Arnon Haran
- Department of Hematology, Haddasah Medical Center, Jerusalem, Israel
| | - Michael Bergel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Doron Kleiman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Liron Hefetz
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Hadar Israeli
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | | | - Bella Agranovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ifat Abramovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rachel Ben-Haroush Schyr
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Eyal Gottlieb
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
3
|
Tang X, Zhang Y, Wang G, Zhang C, Wang F, Shi J, Zhang T, Ding J. Molecular mechanism of S-adenosylmethionine sensing by SAMTOR in mTORC1 signaling. SCIENCE ADVANCES 2022; 8:eabn3868. [PMID: 35776786 PMCID: PMC10883374 DOI: 10.1126/sciadv.abn3868] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mechanistic target of rapamycin-mLST8-raptor complex (mTORC1) functions as a central regulator of cell growth and metabolism in response to changes in nutrient signals such as amino acids. SAMTOR is an S-adenosylmethionine (SAM) sensor, which regulates the mTORC1 activity through its interaction with the GTPase-activating protein activity toward Rags-1 (GATOR1)-KPTN, ITFG2, C12orf66 and SZT2-containing regulator (KICSTOR) complex. In this work, we report the crystal structures of Drosophila melanogaster SAMTOR in apo form and in complex with SAM. SAMTOR comprises an N-terminal helical domain and a C-terminal SAM-dependent methyltransferase (MTase) domain. The MTase domain contains the SAM-binding site and the potential GATOR1-KICSTOR-binding site. The helical domain functions as a molecular switch, which undergoes conformational change upon SAM binding and thereby modulates the interaction of SAMTOR with GATOR1-KICSTOR. The functional roles of the key residues and the helical domain are validated by functional assays. Our structural and functional data together reveal the molecular mechanism of the SAM sensing of SAMTOR and its functional role in mTORC1 signaling.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yifan Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Guanchao Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Chunxiao Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Fang Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jiawen Shi
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Nantong 226011, China
| | - Tianlong Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Nantong 226011, China
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Xiangshan Road, Hangzhou 310024, China
| |
Collapse
|
4
|
Zhou R, Lu G, Yan Z, Jiang R, Sun Y, Zhang P. Epigenetic mechanisms of DNA methylation in the transgenerational effect of ethylhexyl salicylate on zebrafish. CHEMOSPHERE 2022; 295:133926. [PMID: 35150701 DOI: 10.1016/j.chemosphere.2022.133926] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/24/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
In this study, a 120-day whole-life cycle exposure and oviposition experiment on zebrafish with maternal and paternal mixed mating strategy was conducted to investigate the epigenetic mechanism of DNA methylation in ethylhexyl salicylate (EHS, 1, 10, 100 μg/L)-induced transgenerational effects. Results showed that EHS could induce the decrease of DNA methyltransferase 1 (DNMT1) activity and average global DNA methylation level in maternal parents and the increase of the above indexes in paternal parents, while the change of glycine N-methyltransferase activity was opposite to DNMT1. The average global DNA methylation levels were significantly increased in the offsprings of both parents exposed and father-only exposed to EHS, suggesting that EHS-induced epigenetic modifications may be stable and heritable. Hierarchical clustering analysis of promoter at different methylation sites showed that the DNA methylation pattern of offsprings were similar to that of the paternal parents, meaning that the offsprings may have inherited paternal DNA methylation pattern with eya2, pcdh2g5 and pcdh2g1 as key genes and lead to high locomotor activity in offsprings. KEGG pathway analysis showed that parental exposure to EHS may interfere with the central nervous system, insulin function system, melanogenesis system and the normal development of somatic axis of offsprings.
Collapse
Affiliation(s)
- Ranran Zhou
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yu Sun
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|