1
|
Ban GI, Puviindran V, Xiang Y, Nadesan P, Tang J, Ou J, Guardino N, Nakagawa M, Browne M, Wallace A, Ishikawa K, Shimada E, Martin JT, Diao Y, Kirsch DG, Alman BA. The COMPASS complex maintains the metastatic capacity imparted by a subpopulation of cells in UPS. iScience 2024; 27:110187. [PMID: 38989451 PMCID: PMC11233968 DOI: 10.1016/j.isci.2024.110187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/20/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Intratumoral heterogeneity is common in cancer, particularly in sarcomas like undifferentiated pleomorphic sarcoma (UPS), where individual cells demonstrate a high degree of cytogenic diversity. Previous studies showed that a small subset of cells within UPS, known as the metastatic clone (MC), as responsible for metastasis. Using a CRISPR-based genomic screen in-vivo, we identified the COMPASS complex member Setd1a as a key regulator maintaining the metastatic phenotype of the MC in murine UPS. Depletion of Setd1a inhibited metastasis development in the MC. Transcriptome and chromatin sequencing revealed COMPASS complex target genes in UPS, such as Cxcl10, downregulated in the MC. Deleting Cxcl10 in non-MC cells increased their metastatic potential. Treating mice with human UPS xenografts with a COMPASS complex inhibitor suppressed metastasis without affecting tumor growth in the primary tumor. Our data identified an epigenetic program in a subpopulation of sarcoma cells that maintains metastatic potential.
Collapse
Affiliation(s)
- Ga I. Ban
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Vijitha Puviindran
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Yu Xiang
- Department of Cell Biology and Duke Regeneration Center, Duke University School of Medicine, Durham, NC, USA
| | - Puvi Nadesan
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Jackie Tang
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Jianhong Ou
- Department of Cell Biology and Duke Regeneration Center, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas Guardino
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Makoto Nakagawa
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - MaKenna Browne
- Department of Cell Biology and Duke Regeneration Center, Duke University School of Medicine, Durham, NC, USA
| | - Asjah Wallace
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Koji Ishikawa
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Eijiro Shimada
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - John T. Martin
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Yarui Diao
- Department of Cell Biology and Duke Regeneration Center, Duke University School of Medicine, Durham, NC, USA
| | - David G. Kirsch
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
- The Princes Margaret Cancer Centre, Department of Radiation Oncology, University Health Network and the University of Toronto, Toronto, ON, Canada
| | - Benjamin A. Alman
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Abu-Hijlih R, Sharaf B, Salah S, Bani Hani H, Alqaisieh M, Alzibdeh A, Ababneh L, Mahafdah S, Abdel-Razeq H. Germline Genetic Mutations in Adult Patients with Sarcoma: Insight into the Middle East Genetic Landscape. Cancers (Basel) 2024; 16:1668. [PMID: 38730621 PMCID: PMC11083501 DOI: 10.3390/cancers16091668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Data on germline mutations in soft tissue and bone sarcomas are scarce. We sought to identify the prevalence of germline mutations in adult sarcoma patients treated at a tertiary cancer center. Newly diagnosed patients were offered germline genetic testing via an 84-gene panel. The prevalence of pathogenic germline variants (PGVs) and their association with disease-, and patient- related factors are reported. A total of 87 patients were enrolled, the median age was 48 (19-78) years, and 47 (54%) were females. Gastrointestinal stromal tumors (n = 12, 13.8%), liposarcoma (n = 10, 11.5%), and Ewing sarcoma (n = 10, 11.5%) were the main subtypes. A total of 20 PGVs were detected in 18 (20.7%) patients. Variants of uncertain significance, in the absence of PGVs, were detected in 40 (45.9%) patients. Young age (p = 0.031), presence of a second primary cancer (p = 0.019), and female gender (p = 0.042) were correlated with the presence of PGVs. All identified PGVs have potential clinical actionability and cascade testing, and eight (44.44%) suggested eligibility for a targeted therapy. Almost one in five adult patients with soft tissue and bone sarcomas harbor pathogenic or likely pathogenic variants. Many of these variants are potentially actionable, and almost all have implications on cancer screening and family counselling. In this cohort from the Middle East, younger age, presence of a second primary tumor, and female gender were significantly associated with higher PGVs rates. Larger studies able to correlate treatment outcomes with genetic variants are highly needed.
Collapse
Affiliation(s)
- Ramiz Abu-Hijlih
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan; (R.A.-H.); (A.A.)
| | - Baha Sharaf
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (B.S.); (S.S.); (H.B.H.); (M.A.)
| | - Samer Salah
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (B.S.); (S.S.); (H.B.H.); (M.A.)
| | - Hira Bani Hani
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (B.S.); (S.S.); (H.B.H.); (M.A.)
| | - Mohammad Alqaisieh
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (B.S.); (S.S.); (H.B.H.); (M.A.)
| | - Abdulla Alzibdeh
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan; (R.A.-H.); (A.A.)
| | - Layan Ababneh
- School of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Suleiman Mahafdah
- Department of Surgery, Royal Jordanian Medical Services, Amman 11855, Jordan;
| | - Hikmat Abdel-Razeq
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (B.S.); (S.S.); (H.B.H.); (M.A.)
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
3
|
Brown JM, Patel R, Smith-Fry K, Ward M, Oliver T, Jones KB. Genetically engineered mouse model of pleomorphic liposarcoma: Immunophenotyping and histologic characterization. Neoplasia 2024; 48:100956. [PMID: 38199172 PMCID: PMC10788790 DOI: 10.1016/j.neo.2023.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Pleomorphic liposarcoma is a rare and aggressive subset of soft-tissue sarcomas with a high mortality burden. Local treatment largely consists of radiation therapy and wide surgical resection, but options for systemic therapy in the setting of metastatic disease are limited and largely ineffective, prompting exploration of novel therapeutic strategies and experimental models. As with other cancers, sarcoma cell lines and patient-derived xenograft models have been developed and used to characterize these tumors and identify therapeutic targets, but these models have inherent limitations. The establishment of genetically engineered mouse models represents a more realistic framework for reproducing clinically relevant conditions for studying pleomorphic liposarcoma. METHODS Trp53fl/fl/Rb1fl/fl/Ptenfl/fl (RPP) mice were used to reliably generate an immunocompetent model of mouse pleomorphic liposarcoma through Cre-mediated conditional silencing of the Trp53, Rb1, and Pten tumor suppressor genes. Evaluation of tumor-infiltrating lymphocytes was assessed with immunostaining for CD4, CD8, and PD-L1, and flow cytometry with analysis of CD45, CD3, CD4, CD8, CD19, F4/80, CD11b, and NKp46 sub-populations. RESULTS Mice reliably produced noticeable soft-tissue tumors in approximately 6 weeks with rapid tumor growth between 100 and 150 days of life, after which mice reached euthanasia criteria. Histologic features were consistent with pleomorphic liposarcoma, including widespread pleomorphic lipoblasts. Immunoprofiling and assessment of tumor-infiltrating lymphocytes was consistent with other soft-tissue sarcomas. CONCLUSION Genetically engineered RPP mice reliably produced soft-tissue tumors consistent with pleomorphic liposarcoma, which immunological findings similar to other soft-tissue sarcomas. This model may demonstrate utility in testing treatments for this rare disease, including immunomodulatory therapies.
Collapse
Affiliation(s)
| | - Rahi Patel
- University of Utah Health Huntsman Cancer Institute, USA
| | | | - Michael Ward
- University of Utah Health Huntsman Cancer Institute, USA
| | | | - Kevin B Jones
- University of Utah Health Huntsman Cancer Institute, USA
| |
Collapse
|
4
|
Yellapu NK, Pei D, Nissen E, Thompson JA, Koestler DC. Comprehensive exploration of JQ1 and GSK2801 targets in breast cancer using network pharmacology and molecular modeling approaches. Comput Struct Biotechnol J 2023; 21:3224-3233. [PMID: 38213901 PMCID: PMC10781883 DOI: 10.1016/j.csbj.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 01/13/2024] Open
Abstract
JQ1 and GSK2801 are bromo domain inhibitors (BDI) known to exhibit enhanced anti-cancer activity when combined with other agents. However, the underlying molecular mechanisms behind such enhanced activity remain unclear. We used network-pharmacology approaches to understand the shared molecular mechanisms behind the enhanced activity of JQ1 and GSK2801 when used together to treat breast cancer (BC). The gene targets of JQ1 and GSK2801 were intersected with known BC-targets and their putative targets against BC were derived. The key genes were explored through gene-ontology-enrichment, Protein-Protein-Interaction (PPI) networking, survival analysis, and molecular modeling simulations. The genes, CTSB, MAPK14, MET, PSEN2 and STAT3, were found to be common targets for both drugs. In total, 49 biological processes, five molecular functions and 61 metabolic pathways were similarly enriched for JQ1 and GSK2801 BC targets among which several terms are related to cancer: IL-17, TNF and JAK-STAT signaling pathways. Survival analyses revealed that all five putative synergistic targets are significantly associated with survival in BC (log-rank p < 0.05). Molecular modeling studies showed stable binding of JQ1 and GSK2801 against their targets. In conclusion, this study explored and illuminated the possible molecular mechanisms behind the enhanced activity of JQ1 and GSK2801 against BC and suggests synergistic action through their similar BC-targets and gene-ontologies.
Collapse
Affiliation(s)
- Nanda Kumar Yellapu
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, Kansas City, KS, USA
| | - Dong Pei
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, Kansas City, KS, USA
| | - Emily Nissen
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, Kansas City, KS, USA
| | - Jeffrey A. Thompson
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, Kansas City, KS, USA
| | - Devin C. Koestler
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, Kansas City, KS, USA
| |
Collapse
|
5
|
Merlini A, Pavese V, Manessi G, Rabino M, Tolomeo F, Aliberti S, D’Ambrosio L, Grignani G. Targeting cyclin-dependent kinases in sarcoma treatment: Current perspectives and future directions. Front Oncol 2023; 13:1095219. [PMID: 36741019 PMCID: PMC9893281 DOI: 10.3389/fonc.2023.1095219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Effective treatment of advanced/metastatic bone and soft tissue sarcomas still represents an unmet medical need. Recent advances in targeted therapies have highlighted the potential of cyclin-dependent kinases (CDK) inhibitors in several cancer types, including sarcomas. CDKs are master regulators of the cell cycle; their dysregulation is listed among the "hallmarks of cancer" and sarcomas are no exception to the rule. In this review, we report both the molecular basis, and the potential therapeutic implications for the use of CDK inhibitors in sarcoma treatment. What is more, we describe and discuss the possibility and biological rationale for combination therapies with conventional treatments, target therapy and immunotherapy, highlighting potential avenues for future research to integrate CDK inhibition in sarcoma treatment.
Collapse
Affiliation(s)
- Alessandra Merlini
- Candiolo Cancer Institute, IRCCS-FPO, Turin, Italy,Department of Oncology, University of Turin, Turin, Italy
| | - Valeria Pavese
- Department of Oncology, University of Turin, Turin, Italy
| | - Giulia Manessi
- Department of Oncology, University of Turin, Turin, Italy
| | - Martina Rabino
- Department of Oncology, University of Turin, Turin, Italy
| | | | | | - Lorenzo D’Ambrosio
- Department of Oncology, University of Turin, Turin, Italy,Medical Oncology, Azienda Ospedaliera Universitaria San Luigi Gonzaga, Turin, Italy,*Correspondence: Lorenzo D’Ambrosio,
| | | |
Collapse
|