1
|
Bogun L, Koch A, Scherer B, Germing U, Fenk R, Maus U, Bormann F, Köhrer K, Petzsch P, Wachtmeister T, Kobbe G, Dietrich S, Haas R, Schroeder T, Geyh S, Jäger P. Overlapping Stromal Alterations in Myeloid and Lymphoid Neoplasms. Cancers (Basel) 2024; 16:2071. [PMID: 38893194 PMCID: PMC11171322 DOI: 10.3390/cancers16112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Myeloid and lymphoid neoplasms share the characteristics of potential bone marrow infiltration as a primary or secondary effect, which readily leads to hematopoietic insufficiency. The mechanisms by which clonal malignant cells inhibit normal hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM) have not been unraveled so far. Given the pivotal role of mesenchymal stromal cells (MSCs) in the regulation of hematopoiesis in the BM niche it is assumed that MSCs also play a relevant role in the pathogenesis of hematological neoplasms. We aimed to identify overlapping mechanisms in MSCs derived from myeloid and lymphoid neoplasms contributing to disease progression and suppression of HSPCs to develop interventions that target these mechanisms. MSCs derived from healthy donors (n = 44) and patients diagnosed with myeloproliferative neoplasia (n = 11), myelodysplastic syndromes (n = 16), or acute myeloid leukemia (n = 25) and B-Non-Hodgkin lymphoma (n = 9) with BM infiltration and acute lymphoblastic leukemia (n = 9) were analyzed for their functionality and by RNA sequencing. A reduced growth and differentiation capacity of MSCs was found in all entities. RNA sequencing distinguished both groups but clearly showed overlapping differentially expressed genes, including major players in the BMP/TGF and WNT-signaling pathway which are crucial for growth, osteogenesis, and hematopoiesis. Functional alterations in healthy MSCs were inducible by exposure to supernatants from malignant cells, implicating the involvement of these factors in disease progression. Overall, we were able to identify overlapping factors that pose potential future therapeutic targets.
Collapse
Affiliation(s)
- Lucienne Bogun
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Annemarie Koch
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Bo Scherer
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Uwe Maus
- Department of Orthopedic Surgery and Traumatology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany;
| | | | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (K.K.); (P.P.); (T.W.)
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (K.K.); (P.P.); (T.W.)
| | - Thorsten Wachtmeister
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (K.K.); (P.P.); (T.W.)
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Paul Jäger
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| |
Collapse
|
2
|
Lai G, De Grossi F, Catusi I, Pesce E, Manfrini N. Dissecting the Puzzling Roles of FAM46C: A Multifaceted Pan-Cancer Tumour Suppressor with Increasing Clinical Relevance. Cancers (Basel) 2024; 16:1706. [PMID: 38730656 PMCID: PMC11083040 DOI: 10.3390/cancers16091706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
FAM46C is a well-established tumour suppressor with a role that is not completely defined or universally accepted. Although FAM46C expression is down-modulated in several tumours, significant mutations in the FAM46C gene are only found in multiple myeloma (MM). Consequently, its tumour suppressor activity has primarily been studied in the MM context. However, emerging evidence suggests that FAM46C is involved also in other cancer types, namely colorectal, prostate and gastric cancer and squamous cell and hepatocellular carcinoma, where FAM46C expression was found to be significantly reduced in tumoural versus non-tumoural tissues and where FAM46C was shown to possess anti-proliferative properties. Accordingly, FAM46C was recently proposed to function as a pan-cancer prognostic marker, bringing FAM46C under the spotlight and attracting growing interest from the scientific community in the pathways modulated by FAM46C and in its mechanistic activity. Here, we will provide the first comprehensive review regarding FAM46C by covering (1) the intracellular pathways regulated by FAM46C, namely the MAPK/ERK, PI3K/AKT, β-catenin and TGF-β/SMAD pathways; (2) the models regarding its mode of action, specifically the poly(A) polymerase, intracellular trafficking modulator and inhibitor of centriole duplication models, focusing on connections and interdependencies; (3) the regulation of FAM46C expression in different environments by interferons, IL-4, TLR engagement or transcriptional modulators; and, lastly, (4) how FAM46C expression levels associate with increased/decreased tumour cell sensitivity to anticancer agents, such as bortezomib, dexamethasone, lenalidomide, pomalidomide, doxorubicin, melphalan, SK1-I, docetaxel and norcantharidin.
Collapse
Affiliation(s)
- Giancarlo Lai
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Federica De Grossi
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Ilaria Catusi
- SC Clinical Pathology, SS Medical Genetics Laboratory, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Elisa Pesce
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Nicola Manfrini
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
3
|
Diamantidis MD, Papadaki S, Hatjiharissi E. Exploring the current molecular landscape and management of multiple myeloma patients with the t(11;14) translocation. Front Oncol 2022; 12:934008. [PMID: 35982976 PMCID: PMC9379277 DOI: 10.3389/fonc.2022.934008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is a genetically complex disease. The key myeloma-initiating genetic events are hyperdiploidy and translocations involving the immunoglobulin heavy chain (IgH) enhancer on chromosome 14, which leads to the activation of oncogenes (e.g., CCND1, CCND3, MAF, and MMSET). The t(11;14) translocation is the most common in MM (15%–20%) and results in cyclin D1 (CCND1) upregulation, which leads to kinase activation and tumor cell proliferation. Notably, t(11;14) occurs at a higher rate in patients with plasma cell leukemia (40%) and light chain amyloidosis (50%). Patients with myeloma who harbor the t(11;14) translocation have high levels of the anti-apoptotic protein B-cell lymphoma 2 (BCL2). Multiple studies demonstrated that the presence of t(11;14) was predictive of BCL2 dependency, suggesting that BCL2 could be a target in this subtype of myeloma. Venetoclax, an oral BCL2 inhibitor, has shown remarkable activity in treating relapsed/refractory MM patients with t(11;14) and BCL2 overexpression, either as monotherapy or in combination with other anti-myeloma agents. In this review, we describe the molecular defects associated with the t(11;14), bring into question the standard cytogenetic risk of myeloma patients harboring t(11;14), summarize current efficacy and safety data of targeted venetoclax-based therapies, and discuss the future of individualized or precision medicine for this unique myeloma subgroup, which will guide optimal treatment.
Collapse
Affiliation(s)
- Michael D. Diamantidis
- Thalassemia and Sickle Cell Disease Unit, Department of Hematology, General Hospital of Larissa, Larissa, Greece
| | - Sofia Papadaki
- Division of Hematology, First Department of Internal Medicine, AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evdoxia Hatjiharissi
- Division of Hematology, First Department of Internal Medicine, AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Evdoxia Hatjiharissi,
| |
Collapse
|
4
|
Kakoo A, Al-Attar M, Rasheed T. Exonic variants in multiple myeloma patients associated with relapsed/ refractory and response to bortezomib regimens. Saudi J Biol Sci 2022; 29:610-614. [PMID: 35002457 PMCID: PMC8716956 DOI: 10.1016/j.sjbs.2021.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022] Open
Abstract
Novel treatment in multiple myeloma represented by proteasome inhibitors, immunomodulatory drugs and monoclonal antibodies have produced a deep response. However, relapses are possible, and all classes of drugs are refractory to patients. Next-generation sequencing has improved our understanding of the multiple myeloma genome related to drug resistance and has discovered many genomic variants. Therefore, this study was conducted to investigate new variants associated with drug resistance in MM patients who relapsed and refractory to bortezomib regimen and daratumumab treatment using next-generation sequencing for whole-exome sequencing. Peripheral blood samples were collected in EDTA tubes from six patients; four were in relapsed and refractory to bortezomib regimens and daratumumab; two patients responded to bortezomib regimens. Whole-exome sequencing was performed by the MGI-DNBSEQ-G400 instrument. We identified 21 variants in multiple myeloma patients. Seventeen variants were found in relapsed and refractory multiple myeloma in 11 genes (GNAQ, PMS1, CREB1, NSUNS2, PIK3CG, ROS1, PMS2, FIT4, KDM5A, STK11 and ZFHX3). And four variants were identified in two patients with response to bortezomib regimens in 4 genes (RAF1, CREB1, ZFHX3 and INSR). We have observed several genetic variants in many genes that may have been associated with the poor prognosis and poor response to treatment in these patients. These values should be further confirmed in large sample studies using the RNA-seq technique to identify genome expression.
Collapse
Key Words
- BCL-2, B-cell lymphoma 2
- BWA, Burrows-Wheeler Aligner
- GATK, Genome Analysis Toolkit
- IGV, Integrative Genomic Viewer
- MAPK, mitogen-activated protein
- MCL-1, myeloid cell leukaemia-1
- MM, multiple myeloma
- MMR, mismatch repair
- Multiple myeloma
- M−CSF, macrophage colony-stimulating factor
- NF-кB, nuclear factor kappa B
- NGS, Next-generation sequence
- Next-generation sequencing
- RANKL, receptor activator of nuclear factors-кB ligand
- RTKs, tyrosine kinases receptors
- SNP, single nucleotide polymorphism
- VEGF-C, vascular endothelial growth factors receptors
- VUS, variant unknown significant
- WES, whole exome sequence
- drug resistance
Collapse
Affiliation(s)
- Ashraf Kakoo
- Department- College of Science, Salahaddin University, Erbil, Iraq
| | - Mustafa Al-Attar
- Department- College of Science, Salahaddin University, Erbil, Iraq
| | - Taban Rasheed
- Department- College of Science, Salahaddin University, Erbil, Iraq
| |
Collapse
|
5
|
Jirabanditsakul C, Dakeng S, Kunacheewa C, U-Pratya Y, Owattanapanich W. Comparison of Clinical Characteristics and Genetic Aberrations of Plasma Cell Disorders in Thailand Population. Technol Cancer Res Treat 2022; 21:15330338221111228. [PMID: 35770320 PMCID: PMC9252016 DOI: 10.1177/15330338221111228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma is an incurable malignancy of plasma cells resulting from impaired terminal B cell development. Almost all patients with multiple myeloma eventually have a relapse. Many studies have demonstrated the importance of the various genomic mutations that characterize multiple myeloma as a complex heterogeneous disease. In recent years, next-generation sequencing has been used to identify the genomic mutation landscape and clonal heterogeneity of multiple myeloma. This is the first study, a prospective observational study, to identify somatic mutations in plasma cell disorders in the Thai population using targeted next-generation sequencing. Twenty-seven patients with plasma cell disorders were enrolled comprising 17 cases of newly diagnosed multiple myeloma, 5 cases of relapsed/refractory multiple myeloma, and 5 cases of other plasma cell disorders. The pathogenic mutations were found in 17 of 27 patients. Seventy percent of those who had a mutation (12/17 patients) habored a single mutation, whereas the others had more than one mutation. Fifteen pathogenic mutation genes were identified: ATM, BRAF, CYLD, DIS3, DNMT3A, FBXW7, FLT3, GNA13, IRF4, KMT2A, NRAS, SAMHD1, TENT5C, TP53, and TRAF3. Most have previously been reported to be involved in the RAS/MAPK pathway, the nuclear factor kappa B pathway, the DNA-repair pathway, the CRBN pathway, tumor suppressor gene mutation, or an epigenetic mutation. However, the current study also identified mutations that had not been reported to be related to myeloma: GNA13 and FBXW7. Therefore, a deep understanding of molecular genomics would inevitably improve the clinical management of plasma cell disorder patients, and the increased knowledge would ultimately result in better outcomes for the patients.
Collapse
Affiliation(s)
- Chutirat Jirabanditsakul
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sumana Dakeng
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Chutima Kunacheewa
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yaowalak U-Pratya
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Weerapat Owattanapanich
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Cutler SD, Knopf P, Campbell CJV, Thoni A, El Hassan MA, Forward N, White D, Wagner J, Goudie M, Boudreau JE, Kennedy BE, Gujar S, Gaston D, Elnenaei MO. DMG26: A Targeted Sequencing Panel for Mutation Profiling to Address Gaps in the Prognostication of Multiple Myeloma. J Mol Diagn 2021; 23:1699-1714. [PMID: 34562616 DOI: 10.1016/j.jmoldx.2021.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/15/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022] Open
Abstract
Multiple myeloma presents with numerous primary genomic lesions that broadly dichotomize cases into hyperdiploidy or IgH translocated. Clinically, these large alterations are assessed by fluorescence in situ hybridization (FISH) for risk stratification at diagnosis. Secondary focal events, including indels and single-nucleotide variants, are also reported; however, their clinical correlates are poorly described, and FISH has insufficient resolution to assess many of them. In this study, we examined the exonic sequences of 26 genes reported to be mutated in >1% of patients with myeloma using a custom panel. We sequenced these exons to approximately 1000 times in a cohort of 76 patients from Atlantic Canada with detailed clinical correlates and in four multiple myeloma cell lines. Across the 76 patients, 255 mutations and 33 focal copy number variations were identified. High-severity mutations and mutations predicted by FATHMM-XF to be pathogenic identified patients with significantly reduced progression-free survival. These mutations were mutually exclusive from the Revised International Staging System high-risk FISH markers and were independent of all biochemical parameters of the Revised International Staging System. Applying our panel to patients classified by FISH to be standard risk successfully reclassified patients into high- and standard-risk groups. Furthermore, three patients in our cohort each had two high-risk markers; two of these patients developed plasma cell leukemia, a rare and severe clinical sequela of multiple myeloma.
Collapse
Affiliation(s)
- Samuel D Cutler
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Philipp Knopf
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Clinton J V Campbell
- Pathology & Molecular Medicine, Faculty of Health Sciences, McMaster University, Toronto, Ontario, Canada
| | - Andrea Thoni
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Pathology & Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | | | - Nicholas Forward
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Darrell White
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julie Wagner
- Pathology & Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Marissa Goudie
- Pathology & Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Jeanette E Boudreau
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Barry E Kennedy
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shashi Gujar
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Daniel Gaston
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Pathology & Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada; Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada.
| | - Manal O Elnenaei
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Pathology & Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada; Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada.
| |
Collapse
|
7
|
Zhang H, Zhang SH, Hu JL, Wu YT, Ma XY, Chen Y, Yu B, Liao S, Huang H, Gao S. Structural and functional characterization of multiple myeloma associated cytoplasmic poly(A) polymerase FAM46C. Cancer Commun (Lond) 2021; 41:615-630. [PMID: 34048638 PMCID: PMC8286142 DOI: 10.1002/cac2.12163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background Multiple myeloma (MM) is a hematologic malignancy characterized by the accumulation of aberrant plasma cells within the bone marrow. The high frequent mutation of family with sequence similarity 46, member C (FAM46C) is closely related with the occurrence and progression of MM. Recently, FAM46C has been identified as a non‐canonical poly(A) polymerase (PAP) that functions as a tumor suppressor in MM. This study aimed to elucidate the structural features of this novel non‐canonical PAP and how MM‐related mutations affect the structural and biochemical properties of FAM46C, eventually advancing our understandings towards FAM46C mutation‐related MM occurrence. Methods We purified and crystallized a mammalian FAM46C construct, and solved its structure. Next, we characterized the property of FAM46C as a PAP through a combination of structural analysis, site‐directed mutagenesis and biochemical assays, and by comparison with its homolog FAM46B. Finally, we structurally analyzed MM‐related FAM46C mutations and tested the enzymatic activity of corresponding mutants. Results We determined the crystal structure of a mammalian FAM46C protein at 2.35 Å, and confirmed that FAM46C preferentially consumed adenosine triphosphate (ATP) and extended A‐rich RNA substrates. FAM46C showed a weaker PAP activity than its homolog FAM46B, and this difference was largely dependent on the residue variance at particular sites. Of them, residues at positions 77, 290, and 298 of mouse FAM46C were most important for the divergence in enzymatic activity. Among the MM‐associated FAM46C mutants, those residing at the catalytic site (D90G and D90H) or putative RNA‐binding site (I155L, S156F, D182Y, F184L, Y247V, and M270V) showed abolished or compromised PAP activity of FAM46C, while N72A and S248A did not severely affect the PAP activity. FAM46C mutants D90G, D90H, I155L, S156F, F184L, Y247V, and M270V had significantly lower inhibitory effect on apoptosis of RPMI‐8226 cells as compared to wild‐type FAM46C. Conclusions FAM46C is a prokaryotic‐like PAP with preference for A‐rich RNA substrates, and showed distinct enzymatic efficiency with its homolog FAM46B. The MM‐related missense mutations of FAM46C lead to various structural and biochemical outcomes to the protein.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Shi-Hui Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Jia-Li Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yu-Tong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Xiao-Yan Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yang Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Bing Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Shuang Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, 510530, P. R. China
| |
Collapse
|
8
|
Liu H, Shen Y, Xu Y, Wang L, Zhang C, Jiang Y, Hong L, Huang H, Liu H. lncRNA transcription factor 7 is related to deteriorating clinical features and poor prognosis in multiple myeloma, and its knockdown suppresses disease progression by regulating the miR-203-mediated Jagged1-Notch1 signaling pathway. Oncol Lett 2021; 21:412. [PMID: 33841573 PMCID: PMC8020383 DOI: 10.3892/ol.2021.12673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) remains a challenge to treat, and its precise pathogenic mechanisms have not been fully clarified. The present study aimed to evaluate the relation between long non-coding RNA transcription factor 7 (lnc-TCF7) and clinical features, as well as the prognosis of patients with MM, and to determine the effects of lnc-TCF7-knockdown on the regulation (and regulatory mechanisms) of MM progression. lnc-TCF7 expression was detected in the bone marrow plasma cells of 86 patients with MM and 30 healthy controls. In patients with MM, the clinical data were collected, and event-free survival (EFS) and overall survival (OS) analyses were conducted. In vitro, lnc-TCF7 expression was detected in MM cell lines and normal bone marrow plasma cells. Using Roswell Park Memorial Institute 8226 cells, functional experiments were conducted following lnc-TCF7 short hairpin (sh)RNA transfection, and compensation experiments were performed after lnc-TCF7 shRNA transfection alone and in combination with a microRNA (miR)-203 inhibitor. lnc-TCF7 expression was increased in patients with MM compared with the healthy controls and was positively related to β-2-microglobulin expression and International Staging System stage, while negatively associated with complete response, EFS and OS. In vitro, lnc-TCF7 was upregulated in MM cells compared with normal bone marrow plasma cells, and its knockdown suppressed MM cell proliferation while promoting apoptosis. Compensation experiments showed that miR-203 inhibition promoted MM progression by regulating the Jagged1-Notch1 signaling pathway in lnc-TCF7-knockdown cells. In conclusion, increased lnc-TCF7 expression was related to deteriorating clinical features and prognosis, and lnc-TCF7-knockdown inhibited disease progression by regulating the miR-203-mediated Jagged1-Notch1 signaling pathway activation in MM.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Department of Hematology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yaodong Shen
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ya Xu
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Li Wang
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chenlu Zhang
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yijing Jiang
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Lemin Hong
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hongming Huang
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hong Liu
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
9
|
Epigenetic Regulation of Mitochondrial Quality Control Genes in Multiple Myeloma: A Sequenom MassARRAY Pilot Investigation on HMCLs. J Clin Med 2021; 10:jcm10061295. [PMID: 33801014 PMCID: PMC8004002 DOI: 10.3390/jcm10061295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/11/2023] Open
Abstract
The mitochondrial quality control network includes several epigenetically-regulated genes involved in mitochondrial dynamics, mitophagy, and mitochondrial biogenesis under physiologic conditions. Dysregulated expression of such genes has been reported in various disease contexts, including cancer. However, their expression pattern and the possible underlying epigenetic modifications remain to be defined within plasma cell (PC) dyscrasias. Herein, we compared the mRNA expression of mitochondrial quality control genes from multiple myeloma, plasma cell leukemia patients and human myeloma cell lines (HMCLs) with healthy plasma cells; moreover, by applying the Sequenom MassARRAY EpiTYPER technology, we performed a pilot investigation of their CpG methylation status in HMCLs. Overall, the results provided indicate dysregulated expression of several mitochondrial network’s genes, and alteration of the CpG methylation profile, underscoring novel potential myeloma biomarkers deserving in-depth functional investigation in the future.
Collapse
|
10
|
Deng C, Si C, Ye X, Zhou Q, Zeng T, Huang Z, Huang W, Zhu P, Zhong Q, Wu Z, Zhu H, Lin Q, Zhang W, Fu L, Zheng Y, Qian T. Prognostic significance of FSCN family in multiple myeloma. J Cancer 2021; 12:1936-1944. [PMID: 33753991 PMCID: PMC7974516 DOI: 10.7150/jca.53675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic tumor with monoclonal proliferation of malignant plasma cells in the bone marrow. Fascin (FSCN) is an actin-binding protein that plays a crucial role in cell migration and invasion, contributing to tumor metastasis. There are three members (FSCN1-3) in FSCN family. However, the prognostic role of FSCN family in MM remains unclear. In this study, we used four independent Gene Expression Omnibus (GEO) datasets to explore the relationships between FSCN1-3 expression profiles and patient survival in MM. We found that FSCN1 was dramatically down-regulated in MM compared to normal donors (p < 0.001) and monoclonal gammopathy of undetermined significance (MGUS) (p = 0.032). Patients with high expression of FSCN1 and FSCN2 had significantly longer OS (p = 0.023 and 0.028, respectively). Univariate and multivariate analysis showed that FSCN1 (p = 0.003, 0.002) and FSCN2 (p = 0.018, 0.013) were independent favorable prognostic factors for OS in MM. Moreover, the combination of high expression of FSCN1 and FSCN2 could effectively predict both longer EFS (p = 0.046) and OS (p = 0.015). Our study suggested that FSCN1 and FSCN2 can be used as favorable biomarkers for predicting clinical outcomes in MM.
Collapse
Affiliation(s)
- Cong Deng
- Department of Clinical laboratory, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China
| | - Chaozeng Si
- Department of Information Center, China-Japan Friendship Hospital, 100029 Beijing, China
| | - Xu Ye
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China
| | - Qiang Zhou
- Department of Clinical laboratory, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China
| | - Tiansheng Zeng
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Zeyong Huang
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Pei Zhu
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Qingfu Zhong
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Zhihua Wu
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Huoyan Zhu
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Qing Lin
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Wenjuan Zhang
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, Huaihe Hospital of Henan University, 475000 Kaifeng, China.,Department of Hematology, Huaihe Hospital of Henan University, 475000 Kaifeng, China
| | - Yongjiang Zheng
- Department of Hematology, Institute of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, 510630 Guangzhou, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| |
Collapse
|
11
|
Weick EM, Lima CD. RNA helicases are hubs that orchestrate exosome-dependent 3'-5' decay. Curr Opin Struct Biol 2020; 67:86-94. [PMID: 33147539 DOI: 10.1016/j.sbi.2020.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 01/10/2023]
Abstract
The RNA exosome is a conserved complex of proteins that mediates 3'-5' RNA processing and decay. Its functions range from processing of non-coding RNAs such as ribosomal RNAs and decay of aberrant transcripts in the nucleus to cytoplasmic mRNA turnover and quality control. Ski2-like RNA helicases translocate substrates to exosome-associated ribonucleases and interact with the RNA exosome either directly or as part of multi-subunit helicase-containing complexes that identify and target RNA substrates for decay. Recent structures of these helicases with their RNA-binding partners or the RNA exosome have advanced our understanding of a system of modular and mutually exclusive contacts between the exosome and exosome-associated helicase complexes that shape the transcriptome by orchestrating exosome-dependent 3'-5' decay.
Collapse
Affiliation(s)
- Eva-Maria Weick
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
12
|
Liu J, Du F, Chen C, Li D, Chen Y, Xiao X, Hou X. CircRNA ITCH increases bortezomib sensitivity through regulating the miR-615-3p/PRKCD axis in multiple myeloma. Life Sci 2020; 262:118506. [PMID: 33031827 DOI: 10.1016/j.lfs.2020.118506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022]
Abstract
AIMS Bortezomib (BTZ) is described as the first-line agent for multiple myeloma (MM) chemotherapy, but the emergence of BTZ resistance usually results in the failure of chemotherapy in MM. Circular RNA (circRNA) itchy E3 ubiquitin protein ligase (circITCH) is a novel identified circRNA that plays a vital role in the development of human cancers. However, the role of circITCH in the development of BTZ resistance in MM remains elusive. MATERIALS AND METHODS The expression of circITCH, miR-615-3p, and protein kinase C, delta (PRKCD) was detected with quantitative reverse transcription PCR and western blot. The effects of circITCH on the sensitivity of MM cells to BTZ were assessed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, flow cytometry, and xenograft tumor assay. The interaction of circITCH, microRNA-615-3p, and PRKCD was explored using luciferase reporter assay and RNA immunoprecipitation assay. KEY FINDINGS circITCH was downregulated in MM bone marrow specimens and cell lines, as well as BTZ-resistant MM cells. Reduced expression of circITCH was indicative of poor prognosis in MM patients. Upregulation of circITCH enhanced the sensitivity of BTZ-resistant MM cells to BTZ in vitro and in vivo. Furthermore, circITCH was identified as a sponge for miR-615-3p, and PRKCD is confirmed as a direct target of miR-615-3p. Besides, circITCH overexpression enhanced the sensitivity of MM cells to BTZ through miR-615-3p/PRKCD axis. SIGNIFICANCE circITCH overexpression enhanced the sensitivity of MM cells to BTZ through miR-615-3p/PRKCD axis, providing a novel potential target for combating BTZ resistance in patients with MM.
Collapse
Affiliation(s)
- Jianhua Liu
- Orthopaedics Department, The First Affiliated Hospital of Henan University, Kaifeng, Henan, China
| | - Fang Du
- Department of Hematology and Oncology, No. 988 Hospital of Joint Logistic Support Force of the Chinese People's Liberation Army, Zhengzhou, Henan Province, China
| | - Chaohui Chen
- Orthopaedics Department, The First Affiliated Hospital of Henan University, Kaifeng, Henan, China
| | - Donghui Li
- Orthopaedics Department, The First Affiliated Hospital of Henan University, Kaifeng, Henan, China
| | - Yong Chen
- Orthopaedics Department, The First Affiliated Hospital of Henan University, Kaifeng, Henan, China
| | - Xia Xiao
- Orthopaedics Department, The First Affiliated Hospital of Henan University, Kaifeng, Henan, China
| | - Xiaodong Hou
- Ultrasound Department, The First Affiliated Hospital of Henan University, Kaifeng, Henan, China.
| |
Collapse
|
13
|
Fu L, Cheng Z, Dong F, Quan L, Cui L, Liu Y, Zeng T, Huang W, Chen J, Pang Y, Ye X, Wu G, Qian T, Chen Y, Si C. Enhanced expression of FCER1G predicts positive prognosis in multiple myeloma. J Cancer 2020; 11:1182-1194. [PMID: 31956364 PMCID: PMC6959079 DOI: 10.7150/jca.37313] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Multiple myeloma (MM) is the second most common hematologic malignancy worldwide and does not have sufficient prognostic indicators. FCER1G (Fc fragment Of IgE receptor Ig) is located on chromosome 1q23.3 and is involved in the innate immunity. Early studies have shown that FCER1G participates in many immune-related pathways encompassing multiple cell types. Meanwhile, it is associated with many malignancies. However, the relationship between MM and FCER1G has not been studied. Methods: In this study, we integrated nine independent gene expression omnibus (GEO) datasets and analyzed the associations of FCER1G expression and myeloma progression, ISS stage, 1q21 amplification and survival in 2296 myeloma patients and 48 healthy donors. Results: The expression of FCER1G showed a decreasing trend with the advance of myeloma. As ISS stage and 1q21 amplification level increased, the expression of FCER1G decreased (P = 0.0012 and 0.0036, respectively). MM patients with high FCER1G expression consistently had longer EFS and OS across three large sample datasets (EFS: P = 0.0057, 0.0049, OS: P = 0.0014, 0.00065, 0.0019 and 0.0029, respectively). Meanwhile, univariate and multivariate analysis indicated that high FCER1G expression was an independent favorable prognostic factor for EFS and OS in MM patients (EFS: P = 0.006, 0.027, OS: P =0.002,0.025, respectively). Conclusions: The expression level of FCER1G negatively correlated with myeloma progression, and high FCER1G expression may be applied as a favorable biomarker in MM patients.
Collapse
Affiliation(s)
- Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Zhiheng Cheng
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Fen Dong
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Liang Quan
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tiansheng Zeng
- Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy
| | - Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Jinghong Chen
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Ying Pang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xu Ye
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Guangsheng Wu
- Department of Hematology, First Affiliated Hospital, Medical College of Shihezi University, Shihezi 832008, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, TNLIST; Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Chaozeng Si
- Department of Operations and Information Management, China-Japan Friendship Hospital, Beijing, 100029, China
| |
Collapse
|
14
|
Sun C, Li H, Mills RE, Guan Y. Prognostic model for multiple myeloma progression integrating gene expression and clinical features. Gigascience 2019; 8:giz153. [PMID: 31886876 PMCID: PMC6936209 DOI: 10.1093/gigascience/giz153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematological cancer caused by abnormal accumulation of monoclonal plasma cells in bone marrow. With the increase in treatment options, risk-adapted therapy is becoming more and more important. Survival analysis is commonly applied to study progression or other events of interest and stratify the risk of patients. RESULTS In this study, we present the current state-of-the-art model for MM prognosis and the molecular biomarker set for stratification: the winning algorithm in the 2017 Multiple Myeloma DREAM Challenge, Sub-Challenge 3. Specifically, we built a non-parametric complete hazard ranking model to map the right-censored data into a linear space, where commonplace machine learning techniques, such as Gaussian process regression and random forests, can play their roles. Our model integrated both the gene expression profile and clinical features to predict the progression of MM. Compared with conventional models, such as Cox model and random survival forests, our model achieved higher accuracy in 3 within-cohort predictions. In addition, it showed robust predictive power in cross-cohort validations. Key molecular signatures related to MM progression were identified from our model, which may function as the core determinants of MM progression and provide important guidance for future research and clinical practice. Functional enrichment analysis and mammalian gene-gene interaction network revealed crucial biological processes and pathways involved in MM progression. The model is dockerized and publicly available at https://www.synapse.org/#!Synapse:syn11459638. Both data and reproducible code are included in the docker. CONCLUSIONS We present the current state-of-the-art prognostic model for MM integrating gene expression and clinical features validated in an independent test set.
Collapse
Affiliation(s)
- Chen Sun
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Hongyang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Nephrology Division, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Szymczyk A, Macheta A, Podhorecka M. Abnormal microRNA expression in the course of hematological malignancies. Cancer Manag Res 2018; 10:4267-4277. [PMID: 30349361 PMCID: PMC6183594 DOI: 10.2147/cmar.s174476] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Research on the carcinogenesis process is currently focused primarily on understanding its genetic basis and molecular abnormalities that may be predictive factors and therapeutic targets. It was clearly confirmed recently that microRNAs are involved in the mechanisms of leukocyte development, differentiation, and apoptosis, as well as in the pathogenesis of proliferative diseases of the hematopoietic system. Currently, research strategies allow determination of the deregulation of microRNA profiles in relation to other cytogenetic aberrations, as well as prognostic factors and primary end points. The problem of the possibility of their use as therapeutic targets is also increasingly discussed. In this article, we analyze literature data on abnormalities in microRNA expression in proliferative diseases of the hematopoietic system in the context of classic cytogenetic and molecular aberrations.
Collapse
Affiliation(s)
- Agnieszka Szymczyk
- Independent Clinical Transplantology Unit, Medical University of Lublin, Lublin, Poland,
| | - Arkadiusz Macheta
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Monika Podhorecka
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
16
|
Towards Molecular Profiling in Multiple Myeloma: A Literature Review and Early Indications of Its Efficacy for Informing Treatment Strategies. Int J Mol Sci 2018; 19:ijms19072087. [PMID: 30021955 PMCID: PMC6073692 DOI: 10.3390/ijms19072087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 12/26/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematologic malignancy, is characterized by the clonal expansion of plasma cells. Despite dramatic improvements in patients′ survival over the past decade due to advances in therapy exploiting novel molecular targets (immunomodulatory drugs, proteasome inhibitors and monoclonal antibodies), the treatment of relapsed and refractory disease remains challenging. Recent studies confirmed complex, dynamic, and heterogeneous genomic alterations without unifying gene mutations in MM patients. In the current review, we survey recent therapeutic strategies, as well as molecular profiling data on MM, with emphasis on relapsed and refractory cases. A critical appraisal of novel findings and of their potential therapeutic implications will be discussed in detail, along with the author’s own experiences/views.
Collapse
|